summaryrefslogtreecommitdiffstats
path: root/notes
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2022-04-28 13:31:38 +0200
committerNao Pross <np@0hm.ch>2022-04-28 13:40:13 +0200
commitac6a9c683d9a8f94d626838745d9b2bbd459b748 (patch)
tree8b1eb681f7357cb466e0913113979f215fc73038 /notes
parentFix indentation (diff)
downloadFourierOnS2-ac6a9c683d9a8f94d626838745d9b2bbd459b748.tar.gz
FourierOnS2-ac6a9c683d9a8f94d626838745d9b2bbd459b748.zip
Add definition with hypergeometric function 2F1
Diffstat (limited to '')
-rw-r--r--notes/FourierOnS2.tex33
-rw-r--r--notes/build/FourierOnS2.pdfbin54623 -> 56389 bytes
2 files changed, 29 insertions, 4 deletions
diff --git a/notes/FourierOnS2.tex b/notes/FourierOnS2.tex
index 24b972f..edd4813 100644
--- a/notes/FourierOnS2.tex
+++ b/notes/FourierOnS2.tex
@@ -227,7 +227,7 @@ Finding the solutions to this equation is so involved, that it deserves its own
\subsection{The associated Legendre polynomials}
-In this section we would like to find the solutions to the \emph{associated} Legendre equation, which is actually a generalization of Legendre equation:
+In this section we would like to find the solutions to the \emph{associated} Legendre equation, which is actually a generalization of Legendre's equation:
\begin{equation} \label{eqn:legendre}
\left( 1 - x^2 \right) \frac{d^2 y}{dx^2}
- 2x \frac{dy}{dx} + n(n + 1) y(x) = 0.
@@ -240,15 +240,40 @@ Thus we first need examine the solutions to this equation before constructing th
P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor}
\frac{(-1)^k (2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k},
\end{equation}
- known as Legendre's polynomials are solutions to Legendre's equation \eqref{eqn:legendre}.
+ are solutions to Legendre's equation \eqref{eqn:legendre} when \(n > 0\).
\end{proposition}
-\begin{lemma} The expression
+The proof for this proposition is quite algebraically involved and is thus left in the appendix. Since this is a power series \eqref{eqn:legendre-poly} can also be rewritten using Gauss' Hypergeometric function.
+
+\begin{proposition}
+ The polynomial \eqref{eqn:legendre-poly} can we rewritten using Gauss' Hypergeometric function
+ \[
+ {}_2F_1 \left( \begin{matrix}
+ a_1, & a_2 \\ \multicolumn{2}{c}{b}
+ \end{matrix} ; \frac{1 - x}{2} \right)
+ =
+ \sum_{k = 0}^\infty \frac{(a_1)_k (a_2)_k}{(b)_k} \frac{x^k}{k!},
+ \]
+ where the notation \((a)_k\) is for the Pochhammer Symbol
+ \[
+ (a)_k = a (a + 1) \ldots (a + k - 1).
+ \]
+ Hence for \(x \in (-1, 1)\) and \(n \in \mathbb{R}\):
+ \[
+ P_n (x) = {}_2F_1 \left( \begin{matrix}
+ n + 1, & -n \\ \multicolumn{2}{c}{1}
+ \end{matrix} ; \frac{1 - x}{2} \right).
+ \]
+\end{proposition}
+
+In some applications, such as in quantum mechanics, it is more common to see it written yet in another form using Rodrigues' Formula.
+
+\begin{proposition} The expression
\begin{equation} \label{eqn:legendre-rodrigues}
P_n(x) = \frac{1}{n!2^n}\frac{d^n}{dx^n}(x^2-1)^n.
\end{equation}
is equivalent to \eqref{eqn:legendre-poly}.
-\end{lemma}
+\end{proposition}
\begin{proof}
We start expanding the term \((x^2-1)^n\); According to the binomial theorem
diff --git a/notes/build/FourierOnS2.pdf b/notes/build/FourierOnS2.pdf
index 887616d..d40262c 100644
--- a/notes/build/FourierOnS2.pdf
+++ b/notes/build/FourierOnS2.pdf
Binary files differ