From 8f675ddfda97b9298fe0e3503ce533d2c2bcd746 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 26 Apr 2022 00:19:09 +0200 Subject: Minor corrections and rewording --- notes/FourierOnS2.tex | 12 +++++++----- notes/build/FourierOnS2.pdf | Bin 45497 -> 44823 bytes notes/tex/docstyle.sty | 2 +- 3 files changed, 8 insertions(+), 6 deletions(-) diff --git a/notes/FourierOnS2.tex b/notes/FourierOnS2.tex index aeae7ef..2dc30c1 100644 --- a/notes/FourierOnS2.tex +++ b/notes/FourierOnS2.tex @@ -61,7 +61,7 @@ With this construction, now we just need a suitable set of basis function for th where \(m, n \in \mathbb{Z}\), be our basis functions in the space of ``nice'' functions from \(\mathbb{R}^2\) to \(\mathbb{C}\). Like in the one dimensional Fourier analysis, we can now define the Fourier coefficients. \begin{definition}[Fourier coefficients] - Let \(f : \mathbb{R}^2 \to \mathbb{C}\) be a ``nice'' function. The numbers + Let \(f(\mu, \nu) \in C(\mathbb{R}^2/\mathbb{Z}^2; \mathbb{C})\). The numbers \[ c_{m, n} = \langle f, B_{m, n} \rangle = \iint_{[0, 1]^2} f(\mu, \nu) e^{-i2\pi (m\mu + n\nu)} d\mu d\nu, @@ -69,12 +69,13 @@ where \(m, n \in \mathbb{Z}\), be our basis functions in the space of ``nice'' f are called the Fourier coefficients of \(f\). \end{definition} -And finally by the Fourier theorem we can reconstruct the original function using an unoriginally named Fourier series: +And finally by the Fourier theorem we can reconstruct the original function using a Fourier series: \[ f(\mu, \nu) = \sum_{m\in\mathbb{Z}} \sum_{n\in\mathbb{Z}} c_{m, n} B_{m, n}(\mu, \nu). \] +% TODO: keep or remove? <=> discuss fourier theorem? % \begin{definition}[\(L^2\) norm] % \[ % \|f\|_2 = \sqrt{\langle f, f \rangle} @@ -115,8 +116,9 @@ Notice that the partial derivatives have been simplified to normal derivatives. \] We let \(w\) be the separation constant, and we see that this results in two almost identical problems of the form \[ - \frac{d^2 X}{d\chi^2} = \pm w X(\chi). + \frac{d^2 X}{d\xi^2} = \pm w X(\xi). \] +% TODO: prove / discuss that w (=m or n) must be integers because of the periodicity of f The solutions to this elementary ODE are of course complex exponentials, the same we used to build the Fourier theory. This is not a coincidence, in fact quite the opposite: the basis functions of the Fourier decomposition were chosen such that the Laplacian operator is easy in the frequency domain. In other words, such that the expression \[ \langle \nabla^2 f, B_{m, n} \rangle @@ -124,14 +126,14 @@ The solutions to this elementary ODE are of course complex exponentials, the sam is easy to compute. This is shown in the next lemma. \begin{lemma} - Let \(f \in C(\mathbb{R}^2/\mathbb{Z}^2)\), then + Let \(f \in C(\mathbb{R}^2/\mathbb{Z}^2; \mathbb{C})\), then \[ \langle \nabla^2 f, B_{m, n} \rangle = (2\pi i)^2 \left( m^2 + n^2 \right) \langle f, B_{m, n} \rangle. \] \end{lemma} \begin{proof} -To begin this proof, we first expand the left side of the statement: +To start, we first expand the left side of the statement: \begin{gather} \nonumber \langle \nabla^2 f, B_{m, n} \rangle diff --git a/notes/build/FourierOnS2.pdf b/notes/build/FourierOnS2.pdf index 7316cc2..0201255 100644 Binary files a/notes/build/FourierOnS2.pdf and b/notes/build/FourierOnS2.pdf differ diff --git a/notes/tex/docstyle.sty b/notes/tex/docstyle.sty index f813c99..a094238 100644 --- a/notes/tex/docstyle.sty +++ b/notes/tex/docstyle.sty @@ -3,7 +3,7 @@ %% Margins \RequirePackage{geometry} -\newgeometry{a4paper, margin=2.2cm, top=3cm, bottom=3cm} +\newgeometry{a4paper, margin=2cm, top=3cm, bottom=3cm} %% Headers and footers \RequirePackage{fancyhdr} -- cgit v1.2.1