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1 Fourier on a flat surface

First, we need to discuss about the class of functions
on which the Fourier works at all. We will denote
the set of such functions with C(Q; C), that means:
continuous bounded functions from £ to the complex
numbers. Informally, we will refer to these as “nice”
functions.

To start we first pick Q = R2/Z2, i.e. the set
of “nice” functions that are periodic with period 1.
Then we need to define an inner product in this set
of functions.

Definition 1 (Inner product in C (Rz / ZZ;C)). Let
f(u,v),g(u,v) € C(R?/Z2;C). The inner product
between f and g is

¢.0)= [ rs‘auav,

where g* denotes the complex conjugate of g.

With this construction, now we just need a suit-
able set of basis function for the decomposition.
Again, recall that in the 1D Fourier analysis the ba-
sis functions are complex exponentials. Here it is
no different, we just have two dimensions instead of
one. Therefore, we let

12rmp ei27m1/ —

Bm,n (,U, V) =e etZﬂ(m;an) ’
where m,n € Z, be our basis functions in the space
of “nice” functions from R? to C. Like in the one
dimensional Fourier analysis, we can now define the
Fourier coefficients.

Definition 2 (Fourier coefficients). Let f(u,v) €
C(R?/72;C). The numbers

Cmpn = <f,Bm,n> = // f(lu, V)e—i27r(m,u+nv)d,udv’
[0,1]2

are called the Fourier coefficients of f.

And finally by the Fourier theorem we can recon-
struct the original function using a Fourier series:

f(/.l, v) = Z Z Cm,an,n(,U»V)'

meZneZ

1.1 Why complex exponentials?

A important question now is: Why did we choose
B, to be complex exponentials? The answer has
to do with solving other problems. That is be-
cause originally Fourier developed its theory to solve
some difficult problems in thermodynamics, where
he wanted to solve (among many other equations)

02f  0%f
V2 =—L4+-_2=0
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[FIXME: Should be an eigenvalue problem
ng = Af] This PDE is known as Laplace’s equa-
tion, and can be solved by separation using the
ansatz

(1)

f(u,v) =M(u)N(v),
which when substituted into (1) yields

d’M d’N
dluz N(V) + WM(/J) =0.

Notice that the partial derivatives have been simpli-
fied to normal derivatives. Continuing the separa-
tion method, we divide by M (u)N (v), obtaining:
M 1 d'N 1 _
du? M(u)  dv2 N(v)

w —w

We let w be the separation constant, and we see that
this results in two almost identical problems of the
form )

d°X

— = zwX (¢).

G5 = X (©)
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The solutions to this elementary ODE are of course
complex exponentials, the same we used to build the
Fourier theory. This is not a coincidence, in fact
quite the opposite: the basis functions of the Fourier
decomposition were chosen such that the Laplacian
operator is easy in the frequency domain. In other
words, such that the expression

(V*f,Bmn)
is easy to compute. This is shown in the next lemma.

Lemma 1. Let f € C(R2/Z2;C), then

(Vf, B) = (2% (m® 412 <F, Bo).

Proof. To start, we first expand the left side of the
statement:

(V2f, Bp) = // LV FBududy
[0,1

55

Since the integrand is a sum of partial derivatives,
we now have 2 integrals. Notice that inside each in-
tegral we have an expressions of the form:

?*f

/01 852

once with x = m,¢ = p and the second time with
x = n,¢ = v. The integral (3) can be integrated by
parts twice resulting in this ugly expression:

iomee [OF
2mxé | 2
o (o

However, actually this is not too bad. That is be-
cause once we substitute the bounds two things hap-
pen: the exponential in the front always equals 1 and
what is inside of the parenthesis can be rewritten as

92f

avz) e_i2”m/‘e_i2”m’d,udv. (2)

—L27rxfdé-, (3)

fe_izﬂxfdf.
[0,1]

+ (i27x)2

1
- i27rf)
0

of . of
£(1) - Q(O) +127 [£(1) - £(0)],

which equals zero, since f and its derivative are con-
tinuous and periodic. Hence, we are left with two
integrals, that when substituted back into (2) give:

<V2f, Bm,n> =

(i27rm)> // feri2mmig=i2nY 1y,
[0,1]2

+ (i27n)? // femI2mmbG=I2TY Gy,
(0,112

Finally, to complete the proof we rewrite the right
side using the compact notation:

(i277m)2<f7 Bm,n> + (i27tn)2(f, Bm,n>- o

2 Fourier on the Sphere

2.1 The hard problem

Like in the previous case, the motivation for the con-
struction of a Fourier theory is a hard problem in-
volving derivatives. In this case, we want to solve
problems that are spherically symmetric, something
that is found very often in Physics (potential around
a point charge, atomic orbitals, gravitational fields
of planets, etc.).
In this case the equation for which solutions are
sought is
Vaf(9,90) =0 (4)

where f is a function on the unit sphere and Vg is
the surface Laplacian, which is defined to be:

19a 1 92
2= smoao \°°

09) " sin2 9 9¢g?’

The subscript is there to hint that this is a derivative
on the unit sphere S2. The surface Laplacian can
also be defined in term of the normal Laplacian in
spherical coordinates, by removing the radial com-

ponent:
2

J
Vi =rv?- rer
r

Like in the flat case (4) is solved with a product

ansatz
f(9,9) =0(9)D(p).

Though, unfortunately this time the separation pro-
cess 1s more involved, and the results more compli-
cated. The separation with the separation variable
m yields the following ODEs:

—dz—q)—l (5a)

dg? () 5
_ 1 d (. ,d®
“snodo "0

(9 b

g] (9) (5b)

Equation (5a) is easy, the solutions are complex
exponentials ¥, while (5b) is known as the as-
sociated Legendre equation. Though, normally the
equation is written in term of x and y(x), so (5b) is
brought to a more familiar form by using the substi-
tution x = cosJ and y = O:

2

y(x) =

Finding the solutions to this equation is so involved,
that it deserves its own section.
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2.2 The associated Legendre polyno-
mials

In this section we would like to find the solutions to
the associated Legendre equation, which is actually
a generalization of Legendre’s equation:

(1-2*) Gt
Thus we first need examine the solutions to this

equation before constructing the more general solu-
tion.

&y 2xﬂ +n(n+1)y(x) =

R )

Proposition 1. The polynomials

Ln/2]

are solutions to Legendre’s equation (6) when n > 0.

(-DF@2n-2k)! 5
2kl(n—k)(n-2k)"

P,(x) = (7)

Proof. See appendix. O

The proof for this proposition is quite alge-
braically involved and is thus left in the appendix.
Since this is a power series (7) can also be rewritten
using Gauss’ Hypergeometric function.

Proposition 2. The polynomial (7) can we rewritten
using Gauss’ Hypergeometric function

a1, az 1-x\ < (a)r(ag) x"
R (s ) L

where the notation (a)y, is for the Pochhammer Sym-
bol
(@)p=ala+1)...(a+k—-1).

Hence for x € (—-1,1) and n € R:

n+1, —n_l—x)

Pp(x) = oF 1 5

In some applications, such as in quantum me-
chanics, it is more common to see it written yet in
another form using Rodrigues’ Formula.

Proposition 3. The expression

1 d°
nl2n dxn

P,(x) = (x2 - 1)".

C))

is equivalent to (7).

Proof. We start expanding the term (x2 — 1)"; Ac-
cording to the binomial theorem

(.7C2 _ l)n — i(_:l)k (n)xZ(n—k)'
k=0 k

Substituting the above, (8) becomes

1 d" L2(R)
n!2n dx® (="~ ‘2” Z(_ ) ( )
Ln/2J .
k 2k
2 (i)
Recall that
dn a __ a! a—n
dxn” _(a—n)!x ’
thus
1 Ln/2]
nian Z (-1) ( ) 2
[n/2]
1 (2n —2R)!
~ nlon kZ‘( D ( )( 2k)!x
1 %J( AR 7 e
= — - x
nlar P kl(n—k)! (n—2k)!
n/2
2 (C1)k(2n - 2k)! g

4 2k (n — k)l(n - 2k

Now, using the solutions to the Legendre equation
we can construct the solution to the more general
problem:

2

2 |y@=0.

This equation is considerably more difficult, and
again, we will just analyze the solution.

Definition g (Associated Legendre Polynomials).
Let m € Ny. The polynomials
dm

——Pn(x),

T (10)

Prun(x) = (1 _x )

are called the associated Legendre polynomials.

Lemma 2. The associated Legendre polynomials
(10) are solutions to the associated Legendre differ-
ential equation (9).

Proof. See appendix. O

2.3 Spherical harmonics
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A Proofs

A.1 Legendre Polynomials
Lemma 3. The polynomial

[n/2]

Pux)= Y (- BB
k=0

2R (n—RB)(n-2k)"

is a solution to Legendre’s equation
d’y  dy
2 _
(l—x )W —2.96% +n(n+1)y(x) =0
forn > 0.

Proof. To solve (6) we use the power series ansatz

[se]

y(x) = Z akxk, (11)

&=0
from which follows that
y = Z kapx*1, and y’ = Z k(k - )azx" 2.
k=0 k=0

By substituting the above and (11) into (6) we get the
that first term

2\ = (1.2 N _ k-2
(1 x)y (1 x);)k(k Dapx

= Z (k- 1Dapx®* 2+ k(k - 1)apx®
k=0

=) [(E+1)(k+2)ape+Ek(k—1)az] 2",
k=0

where in the last step to factor out x* we shifted the
index in the coefficients by 2, i.e.

Z k(k - Dapx" 2 = Z(k +2)(E + 1) ajox”.
k=0 k=0
Similarly, the second term:
—2xy’ = —2x Z kapx*1 = Z —2kayx®.
k=0 k=0

Finally, combining the above the complete substitu-
tion yields

(1 - xz)y” —-2xy" +n(n+1)y=0

= i [(k +1)(B+2)apio + k(kE—1)ay
k=0

—2kap +n(n+ l)ak]xk =0,

from which we can extract the recurrence relation

(B+1)(kE+2)aps+Ek(E—1ay
—2kap+n(n+1)ap =0
(E-n)(k+n+1)

MR T T R+ )

ag.

[TODO: finish copying proof]
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