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1 Fourier on a flat surface

First, we need to discuss about the class of functions
on which the Fourier works at all. We will denote
the set of such functions with C(Q; C), that means:
continuous bounded functions from 2 to the complex
numbers. Informally, we will refer to these as “nice”
functions.

To start we first pick Q = R2/Z2, i.e. the set
of “nice” functions that are periodic with period 1.
Then we need to define an inner product in this set
of functions.

Definition 1 (Inner product in C(R?/Z2;C)). Let
f(u,v),g(u,v) € C(R?/Z2;,C). The inner product
between f and g is

0= [ rsdua

where g* denotes the complex conjugate of g.

With this construction, now we just need a suit-
able set of basis function for the decomposition.
Again, recall that in the 1D Fourier analysis the ba-
sis functions are complex exponentials. Here it is
no different, we just have two dimensions instead of
one. Therefore, we let
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where m,n € Z, be our basis functions in the space
of “nice” functions from R? to C. Like in the one
dimensional Fourier analysis, we can now define the
Fourier coefficients.

Definition 2 (Fourier coefficients). Let f(u,v) €
C(R?/72;C). The numbers

emn = (£, Bran) = //[ e B dyay,
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are called the Fourier coefficients of f.

And finally by the Fourier theorem we can recon-
struct the original function using a Fourier series:

f(,u, V) = Z Z cm,an,n(,uy V)'
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1.1 Why complex exponentials?

A important question now is: Why did we choose
B,, » to be complex exponentials? The answer has
to do with solving other problems. That is be-
cause originally Fourier developed its theory to solve
some difficult problems in thermodynamics, where
he wanted to solve (among many other equations)
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This PDE is known as Laplace’s equation, and can
be solved by separation using the ansatz

f(u,v) = M(p)N (),
which when substituted into (1) yields

d’M d’N

Notice that the partial derivatives have been simpli-
fied to normal derivatives. Continuing the separa-
tion method, we divide by M (u)N (v), obtaining:

d’M 1 +d2N 1
du? M(p) = dv2 N(v) ~
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We let w be the separation constant, and we see that
this results in two almost identical problems of the
form )
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The solutions to this elementary ODE are of course
complex exponentials, the same we used to build the
Fourier theory. This is not a coincidence, in fact
quite the opposite: the basis functions of the Fourier
decomposition were chosen such that the Laplacian
operator is easy in the frequency domain. In other
words, such that the expression

(V*f,Bmn)
is easy to compute. This is shown in the next lemma.

Lemma 1. Let f € C(R2/Z2;C), then

(Vf, B) = (2% (m® 412 <F, Bo).

Proof. To start, we first expand the left side of the
statement:

(V2f, Bp) = // LV FBududy
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Since the integrand is a sum of partial derivatives,
we now have 2 integrals. Notice that inside each in-
tegral we have an expressions of the form:

?*f
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once with x = m,¢ = p and the second time with
x = n,¢ = v. The integral (3) can be integrated by
parts twice resulting in this ugly expression:
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However, actually this is not too bad. That is be-
cause once we substitute the bounds two things hap-
pen: the exponential in the front always equals 1 and
what is inside of the parenthesis can be rewritten as
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which equals zero, since f and its derivative are con-
tinuous and periodic. Hence, we are left with two
integrals, that when substituted back into (2) give:

<V2f, Bm,n> =
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Finally, to complete the proof we rewrite the right
side using the compact notation:

(i277m)2<f7 Bm,n> + (i27tn)2(f, Bm,n>- o

2 Fourier on the Sphere

2.1 The hard problem

Like in the previous case, the motivation for the con-
struction of a Fourier theory is a hard problem in-
volving derivatives. In this case, we want to solve
problems that are spherically symmetric, something
that is found very often in Physics (potential around
a point charge, atomic orbitals, gravitational fields
of planets, etc.).
In this case the equation for which solutions are
sought is
Vaf(9,90) =0 (4)

where f is a function on the unit sphere and Vg is
the surface Laplacian, which is defined to be:
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The subscript is there to hint that this is a derivative
on the unit sphere S2. The surface Laplacian can
also be defined in term of the normal Laplacian in
spherical coordinates, by removing the radial com-

ponent:
2
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Like in the flat case (4) is solved with a product

ansatz
f(9,9) =0(9)D(p).

Though, unfortunately this time the separation pro-
cess 1s more involved, and the results more compli-
cated. The separation with the separation variable
m yields the following ODEs:
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Equation (5a) is easy, the solutions are complex
exponentials ¥, while (5b) is known as the as-
sociated Legendre equation. Though, normally the
equation is written in term of x and y(x), so (5b) is
brought to a more familiar form by using the substi-
tution x = cosJ and y = O:

d%y dy m?
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y(x) =

Finding the solutions to this equation is so involved,
that it deserves its own section.
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2.2 The associated Legendre polyno-
mials

2.3 Spherical harmonics
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