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1 Fourier on a flat surface
First, we need to discuss about the class of func-
tions on which the Fourier works at all. We will
denote the set of such functions with 𝐶(Ω;ℂ), that
means: continuous bounded functions from Ω to
the complex numbers. Informally, we will refer to
these as “nice” functions.

To start we first pick Ω = ℝ2/ℤ2, i.e. the set
of “nice” functions that are periodic with period 1.
Then we need to define an inner product in this set
of functions.

Definition 1 (Inner product in 𝐶(ℝ2/ℤ2;ℂ)). Let
𝑓 (𝜇, 𝜈), 𝑔(𝜇, 𝜈) ∈ 𝐶(ℝ2/ℤ2;ℂ). The inner product
between 𝑓 and 𝑔 is

⟨𝑓 , 𝑔⟩ =
∬

[0,1]2
𝑓 𝑔∗𝑑𝜇𝑑𝜈,

where 𝑔∗ denotes the complex conjugate of 𝑔.

With this construction, now we just need a suit-
able set of basis function for the decomposition.
Again, recall that in the 1D Fourier analysis the
basis functions are complex exponentials. Here it
is no different, we just have two dimensions instead
of one. Therefore, we let

𝐵𝑚,𝑛(𝜇, 𝜈) = 𝑒𝑖2𝜋𝑚𝜇𝑒𝑖2𝜋𝑛𝜈 = 𝑒𝑖2𝜋 (𝑚𝜇+𝑛𝜈) ,

where 𝑚, 𝑛 ∈ ℤ, be our basis functions in the space
of “nice” functions from ℝ2 to ℂ. Like in the one
dimensional Fourier analysis, we can now define
the Fourier coefficients.

Definition 2 (Fourier coefficients). Let 𝑓 : ℝ2 → ℂ
be a “nice” function. The numbers

𝑐𝑚,𝑛 = ⟨𝑓 , 𝐵𝑚,𝑛⟩ =
∬

[0,1]2
𝑓 (𝜇, 𝜈)𝑒−𝑖2𝜋 (𝑚𝜇+𝑛𝜈)𝑑𝜇𝑑𝜈,

are called the Fourier coefficients of 𝑓 .
And finally by the Fourier theorem we can recon-

struct the original function using an unoriginally
named Fourier series:

𝑓 (𝜇, 𝜈) =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑐𝑚,𝑛𝐵𝑚,𝑛(𝜇, 𝜈).

1.1 Why complex exponentials?
A important question now is: Why did we choose
𝐵𝑚,𝑛 to be complex exponentials? The answer has
to do with solving other problems. That is be-
cause originally Fourier developed its theory to
solve some difficult problems in thermodynamics,
where he wanted to solve (among many other equa-
tions)

∇2 𝑓 (𝜇, 𝜈) = 𝜕2 𝑓

𝜕𝜇2 + 𝜕2 𝑓

𝜕𝜈2 = 0. (1)

This PDE is known as Laplace’s equation, and
can be solved by separation using the ansatz

𝑓 (𝜇, 𝜈) = 𝑀 (𝜇)𝑁 (𝜈),
which when substituted into (1) yields

𝑑2𝑀

𝑑𝜇2 𝑁 (𝜈) + 𝑑2𝑁

𝑑𝜈2 𝑀 (𝜇) = 0.

Notice that the partial derivatives have been sim-
plified to normal derivatives. Continuing the sepa-
ration method, we divide by 𝑀 (𝜇)𝑁 (𝜈), obtaining:

𝑑2𝑀

𝑑𝜇2
1

𝑀 (𝜇)︸         ︷︷         ︸
𝑤

+ 𝑑2𝑁

𝑑𝜈2
1

𝑁 (𝜈)︸        ︷︷        ︸
−𝑤

= 0.

We let 𝑤 be the separation constant, and we see
that this results in two almost identical problems
of the form

𝑑2𝑋

𝑑𝜒2 = ±𝑤𝑋 (𝜒).
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The solutions to this elementary ODE are of course
complex exponentials, the same we used to build
the Fourier theory. This is not a coincidence, in
fact quite the opposite: the basis functions of the
Fourier decomposition were chosen such that the
Laplacian operator is easy in the frequency do-
main. In other words, such that the expression

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩

is easy to compute. This is shown in the next
lemma.

Lemma 1. Let 𝑓 be a “nice” function. Then

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩ =
(

1
𝑚2 + 1

𝑛2

)
⟨𝑓 , 𝐵𝑚,𝑛⟩.

Proof. To show this, we first expand the left side of
the statement:

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩ =
∬

ℝ2
∇2 𝑓 𝐵𝑚,𝑛𝑑𝜇𝑑𝜈

=
∬

ℝ2

(
𝜕2 𝑓

𝜕𝜇2 + 𝜕2 𝑓

𝜕𝜈2

)
𝑒−𝑖𝑚𝜇𝑒−𝑖𝑛𝜈𝑑𝜇𝑑𝜈. (2)

Since the integrand is a sum of partial derivatives,
we now have 2 integrals. Notice that inside each
integral we have an expressions of the form:∫

ℝ

𝜕2 𝑓

𝜕𝜉2 𝑒
−𝑖𝑥𝜉𝑑𝜉, (3)

once with 𝑥 = 𝑚, 𝜉 = 𝜇 and the second time with
𝑥 = 𝑛, 𝜉 = 𝜈. The integral (3) can be integrated by
parts twice resulting in this ugly expression:

𝑒−𝑥𝜉
(
𝜕𝑓

𝜕𝜉
+ 𝑓

𝑖𝑥

) �����+∞
−∞

− 1
(𝑖𝑥)2

∫
ℝ

𝑓 𝑒− 𝑗𝑥𝜉𝑑𝜉.

However, because 𝑓 is “nice”, both 𝑓 and its deriva-
tive vanish at infinity, leaving only the integral. By
substituting back this result into (2) we get:

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩ =
1
𝑚2

∬
𝑓 𝑒−𝑖𝑚𝜇𝑒−𝑖𝑛𝜈𝑑𝜇𝑑𝜈

+ 1
𝑛2

∬
𝑓 𝑒−𝑖𝑚𝜇𝑒−𝑖𝑛𝜈𝑑𝜇𝑑𝜈

=
1
𝑚2 ⟨𝑓 , 𝐵𝑚,𝑛⟩ +

1
𝑛2 ⟨𝑓 , 𝐵𝑚,𝑛⟩ □

2 Fourier on the Sphere
2.1 The hard problem
Like in the previous case, the motivation for the
construction of a Fourier theory is a hard problem

involving derivatives. In this case, we want to solve
problems that are spherically symmetric, some-
thing that is found very often in Physics (poten-
tial around a point charge, atomic orbitals, grav-
itational fields of planets, etc.).

In this case the equation for which solutions are
sought is

∇2
2 𝑓 (𝜗,𝜑) = 0, (4)

where 𝑓 is a function on the unit sphere and ∇2
2 is

the surface Laplacian, which is defined to be:

∇2
2 =

1
sin𝜗

𝜕

𝜕𝜗

(
sin𝜗

𝜕

𝜕𝜗

)
+ 1

sin2 𝜗

𝜕2

𝜕𝜑2 .

The subscript is there to hint that this is a deriva-
tive on the unit sphere 𝑆2. The surface Laplacian
can also be defined in term of the normal Lapla-
cian in spherical coordinates, by removing the ra-
dial component:

∇2
2 = 𝑟∇2 − 𝑟

𝜕2

𝜕𝑟2 𝑟.

Like in the flat case (4) is solved with a product
ansatz

𝑓 (𝜗,𝜑) = Θ(𝜗)Φ(𝜑).
Though, unfortunately this time the separation
process is more involved, and the results more com-
plicated. The separation with the separation vari-
able 𝑚 yields the following ODEs:

0 =
𝑑2Φ

𝑑𝜑2
1

Φ(𝜑) (5a)

0 =
1

sin𝜗

𝑑

𝑑𝜗

(
sin𝜗

𝑑Θ

𝑑𝜗

)
+
[
𝑛(𝑛 + 1) − 𝑚

sin2 𝜃

]
Θ(𝜗) (5b)

Equation (5a) is easy, the solutions are complex
exponentials 𝑒𝑖𝑚𝜑, while (5b) is known as the as-
sociated Legendre equation. Though, normally the
equation is written in term of 𝑥 and 𝑦(𝑥), so (5b) is
brought to a more familiar form by using the sub-
stitution 𝑥 = cos𝜗 and 𝑦 = Θ:(
1 − 𝑥2

) 𝑑2𝑦

𝑑𝑥
−2𝑥

𝑑𝑦

𝑑𝑥
+
[
𝑛(𝑛 + 1) − 𝑚2

1 − 𝑥2

]
𝑦(𝑥) = 0.

Finding the solutions to this equation is so in-
volved, that it deserves its own section.

2.2 The associated Legendre polyno-
mials

2.3 Spherical harmonics
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