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1 Fourier on a flat surface
First, we need to discuss about the class of functions
on which the Fourier works at all. We will denote
the set of such functions with 𝐶(Ω;ℂ), that means:
continuous bounded functions fromΩ to the complex
numbers. Informally, we will refer to these as “nice”
functions.

To start we first pick Ω = ℝ2/ℤ2, i.e. the set
of “nice” functions that are periodic with period 1.
Then we need to define an inner product in this set
of functions.

Definition 1 (Inner product in 𝐶(ℝ2/ℤ2;ℂ)). Let
𝑓 (𝜇, 𝜈), 𝑔(𝜇, 𝜈) ∈ 𝐶(ℝ2/ℤ2;ℂ). The inner product
between 𝑓 and 𝑔 is

⟨𝑓 , 𝑔⟩ =
∬

[0,1]2
𝑓 𝑔∗𝑑𝜇𝑑𝜈,

where 𝑔∗ denotes the complex conjugate of 𝑔.

With this construction, now we just need a suit-
able set of basis function for the decomposition.
Again, recall that in the 1D Fourier analysis the ba-
sis functions are complex exponentials. Here it is
no different, we just have two dimensions instead of
one. Therefore, we let

𝐵𝑚,𝑛(𝜇, 𝜈) = 𝑒𝑖2𝜋𝑚𝜇𝑒𝑖2𝜋𝑛𝜈 = 𝑒𝑖2𝜋 (𝑚𝜇+𝑛𝜈) ,

where 𝑚, 𝑛 ∈ ℤ, be our basis functions in the space
of “nice” functions from ℝ2 to ℂ. Like in the one
dimensional Fourier analysis, we can now define the
Fourier coefficients.

Definition 2 (Fourier coefficients). Let 𝑓 (𝜇, 𝜈) ∈
𝐶(ℝ2/ℤ2;ℂ). The numbers

𝑐𝑚,𝑛 = ⟨𝑓 , 𝐵𝑚,𝑛⟩ =
∬

[0,1]2
𝑓 (𝜇, 𝜈)𝑒−𝑖2𝜋 (𝑚𝜇+𝑛𝜈)𝑑𝜇𝑑𝜈,

are called the Fourier coefficients of 𝑓 .
And finally by the Fourier theorem we can recon-

struct the original function using a Fourier series:

𝑓 (𝜇, 𝜈) =
∑
𝑚∈ℤ

∑
𝑛∈ℤ

𝑐𝑚,𝑛𝐵𝑚,𝑛(𝜇, 𝜈).

1.1 Why complex exponentials?
A important question now is: Why did we choose
𝐵𝑚,𝑛 to be complex exponentials? The answer has
to do with solving other problems. That is be-
cause originally Fourier developed its theory to solve
some difficult problems in thermodynamics, where
he wanted to solve (among many other equations)

∇2 𝑓 (𝜇, 𝜈) = 𝜕2 𝑓

𝜕𝜇2 + 𝜕2 𝑓

𝜕𝜈2 = 0. (1)

[FIXME: Should be an eigenvalue problem
∇2

2 𝑓 = 𝜆𝑓 ] This PDE is known as Laplace’s equa-
tion, and can be solved by separation using the
ansatz

𝑓 (𝜇, 𝜈) = 𝑀 (𝜇)𝑁 (𝜈),
which when substituted into (1) yields

𝑑2𝑀

𝑑𝜇2 𝑁 (𝜈) + 𝑑2𝑁

𝑑𝜈2 𝑀 (𝜇) = 0.

Notice that the partial derivatives have been simpli-
fied to normal derivatives. Continuing the separa-
tion method, we divide by 𝑀 (𝜇)𝑁 (𝜈), obtaining:

𝑑2𝑀

𝑑𝜇2
1

𝑀 (𝜇)︸         ︷︷         ︸
𝑤

+ 𝑑2𝑁

𝑑𝜈2
1

𝑁 (𝜈)︸        ︷︷        ︸
−𝑤

= 0.

We let 𝑤 be the separation constant, and we see that
this results in two almost identical problems of the
form

𝑑2𝑋

𝑑𝜉2 = ±𝑤𝑋 (𝜉).
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2 FOURIER ON THE SPHERE

The solutions to this elementary ODE are of course
complex exponentials, the same we used to build the
Fourier theory. This is not a coincidence, in fact
quite the opposite: the basis functions of the Fourier
decomposition were chosen such that the Laplacian
operator is easy in the frequency domain. In other
words, such that the expression

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩
is easy to compute. This is shown in the next lemma.
Lemma 1. Let 𝑓 ∈ 𝐶(ℝ2/ℤ2;ℂ), then

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩ = (2𝜋𝑖)2
(
𝑚2 + 𝑛2

)
⟨𝑓 , 𝐵𝑚,𝑛⟩.

Proof. To start, we first expand the left side of the
statement:

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩ =
∬

[0,1]2
∇2 𝑓 𝐵𝑚,𝑛𝑑𝜇𝑑𝜈

=
∬

[0,1]2

(
𝜕2 𝑓

𝜕𝜇2 + 𝜕2 𝑓

𝜕𝜈2

)
𝑒−𝑖2𝜋𝑚𝜇𝑒−𝑖2𝜋𝑛𝜈𝑑𝜇𝑑𝜈. (2)

Since the integrand is a sum of partial derivatives,
we now have 2 integrals. Notice that inside each in-
tegral we have an expressions of the form:∫

[0,1]

𝜕2 𝑓

𝜕𝜉2 𝑒
−𝑖2𝜋𝑥𝜉𝑑𝜉, (3)

once with 𝑥 = 𝑚, 𝜉 = 𝜇 and the second time with
𝑥 = 𝑛, 𝜉 = 𝜈. The integral (3) can be integrated by
parts twice resulting in this ugly expression:

𝑒−𝑖2𝜋𝑥𝜉
(
𝜕𝑓

𝜕𝜉
− 𝑖2𝜋 𝑓

) �����1
0

+ (𝑖2𝜋𝑥)2
∫
[0,1]

𝑓 𝑒−𝑖2𝜋𝑥𝜉𝑑𝜉.

However, actually this is not too bad. That is be-
cause once we substitute the bounds two things hap-
pen: the exponential in the front always equals 1 and
what is inside of the parenthesis can be rewritten as

𝜕𝑓

𝜕𝜉
(1) − 𝜕𝑓

𝜕𝜉
(0) + 𝑖2𝜋 [ 𝑓 (1) − 𝑓 (0)] ,

which equals zero, since 𝑓 and its derivative are con-
tinuous and periodic. Hence, we are left with two
integrals, that when substituted back into (2) give:

⟨∇2 𝑓 , 𝐵𝑚,𝑛⟩ =

(𝑖2𝜋𝑚)2
∬

[0,1]2
𝑓 𝑒−𝑖2𝜋𝑚𝜇𝑒−𝑖2𝜋𝑛𝜈𝑑𝜇𝑑𝜈

+ (𝑖2𝜋𝑛)2
∬

[0,1]2
𝑓 𝑒−𝑖2𝜋𝑚𝜇𝑒−𝑖2𝜋𝑛𝜈𝑑𝜇𝑑𝜈.

Finally, to complete the proof we rewrite the right
side using the compact notation:

(𝑖2𝜋𝑚)2⟨𝑓 , 𝐵𝑚,𝑛⟩ + (𝑖2𝜋𝑛)2⟨𝑓 , 𝐵𝑚,𝑛⟩. □

2 Fourier on the Sphere
2.1 The hard problem
Like in the previous case, the motivation for the con-
struction of a Fourier theory is a hard problem in-
volving derivatives. In this case, we want to solve
problems that are spherically symmetric, something
that is found very often in Physics (potential around
a point charge, atomic orbitals, gravitational fields
of planets, etc.).

In this case the equation for which solutions are
sought is

∇2
2 𝑓 (𝜗,𝜑) = 0, (4)

where 𝑓 is a function on the unit sphere and ∇2
2 is

the surface Laplacian, which is defined to be:

∇2
2 =

1
sin𝜗

𝜕

𝜕𝜗

(
sin𝜗

𝜕

𝜕𝜗

)
+ 1

sin2 𝜗

𝜕2

𝜕𝜑2 .

The subscript is there to hint that this is a derivative
on the unit sphere 𝑆2. The surface Laplacian can
also be defined in term of the normal Laplacian in
spherical coordinates, by removing the radial com-
ponent:

∇2
2 = 𝑟∇2 − 𝑟

𝜕2

𝜕𝑟2 𝑟.

Like in the flat case (4) is solved with a product
ansatz

𝑓 (𝜗,𝜑) = Θ(𝜗)Φ(𝜑).
Though, unfortunately this time the separation pro-
cess is more involved, and the results more compli-
cated. The separation with the separation variable
𝑚 yields the following ODEs:

0 =
𝑑2Φ

𝑑𝜑2
1

Φ(𝜑) (5a)

0 =
1

sin𝜗

𝑑

𝑑𝜗

(
sin𝜗

𝑑Θ

𝑑𝜗

)
+
[
𝑛(𝑛 + 1) − 𝑚

sin2 𝜃

]
Θ(𝜗) (5b)

Equation (5a) is easy, the solutions are complex
exponentials 𝑒𝑖𝑚𝜑, while (5b) is known as the as-
sociated Legendre equation. Though, normally the
equation is written in term of 𝑥 and 𝑦(𝑥), so (5b) is
brought to a more familiar form by using the substi-
tution 𝑥 = cos𝜗 and 𝑦 = Θ:(
1 − 𝑥2

) 𝑑2𝑦

𝑑𝑥2 − 2𝑥
𝑑𝑦

𝑑𝑥
+
[
𝑛(𝑛 + 1) − 𝑚2

1 − 𝑥2

]
𝑦(𝑥) = 0.

Finding the solutions to this equation is so involved,
that it deserves its own section.
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2 FOURIER ON THE SPHERE

2.2 The associated Legendre polyno-
mials

In this section we would like to find the solutions to
the associated Legendre equation, which is actually
a generalization of Legendre’s equation:(

1 − 𝑥2
) 𝑑2𝑦

𝑑𝑥2 − 2𝑥
𝑑𝑦

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑦(𝑥) = 0. (6)

Thus we first need examine the solutions to this
equation before constructing the more general solu-
tion.

Proposition 1. The polynomials

𝑃𝑛(𝑥) =
⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 (2𝑛 − 2𝑘)!
2𝑛𝑘!(𝑛 − 𝑘)!(𝑛 − 2𝑘)!𝑥

𝑛−2𝑘, (7)

are solutions to Legendre’s equation (6) when 𝑛 > 0.

Proof. See appendix. □

The proof for this proposition is quite alge-
braically involved and is thus left in the appendix.
Since this is a power series (7) can also be rewritten
using Gauss’ Hypergeometric function.

Proposition 2. The polynomial (7) can we rewritten
using Gauss’ Hypergeometric function

2𝐹1

(
𝑎1, 𝑎2

𝑏 ;
1 − 𝑥

2

)
=

∞∑
𝑘=0

(𝑎1)𝑘 (𝑎2)𝑘
(𝑏)𝑘

𝑥𝑘

𝑘!
,

where the notation (𝑎)𝑘 is for the Pochhammer Sym-
bol

(𝑎)𝑘 = 𝑎(𝑎 + 1) . . . (𝑎 + 𝑘 − 1).
Hence for 𝑥 ∈ (−1, 1) and 𝑛 ∈ ℝ:

𝑃𝑛(𝑥) = 2𝐹1

(
𝑛 + 1, −𝑛

1 ;
1 − 𝑥

2

)
.

In some applications, such as in quantum me-
chanics, it is more common to see it written yet in
another form using Rodrigues’ Formula.

Proposition 3. The expression

𝑃𝑛(𝑥) =
1

𝑛!2𝑛

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛. (8)

is equivalent to (7).

Proof. We start expanding the term (𝑥2 − 1)𝑛; Ac-
cording to the binomial theorem

(𝑥2 − 1)𝑛 =
𝑛∑

𝑘=0
(−1)𝑘

(
𝑛

𝑘

)
𝑥2(𝑛−𝑘) .

Substituting the above, (8) becomes

1
𝑛!2𝑛

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛 =

1
𝑛!2𝑛

𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
𝑑𝑛

𝑑𝑥𝑛
𝑥2(𝑛−𝑘)

=
1

𝑛!2𝑛

⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
𝑑𝑛

𝑑𝑥𝑛
𝑥2(𝑛−𝑘) .

Recall that

𝑑𝑛

𝑑𝑥𝑛
𝑥𝛼 =

𝛼!
(𝛼 − 𝑛)!𝑥

𝛼−𝑛,

thus

1
𝑛!2𝑛

⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
𝑑𝑛

𝑑𝑥𝑛
𝑥2(𝑛−𝑘)

=
1

𝑛!2𝑛

⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
(2𝑛 − 2𝑘)!
(𝑛 − 2𝑘)! 𝑥𝑛−2𝑘

=
1

𝑛!2𝑛

⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 𝑛!
𝑘!(𝑛 − 𝑘)!

(2𝑛 − 2𝑘)!
(𝑛 − 2𝑘)! 𝑥𝑛−2𝑘

=
⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 (2𝑛 − 2𝑘)!
2𝑛𝑘!(𝑛 − 𝑘)!(𝑛 − 2𝑘)!𝑥

𝑛−2𝑘. □

Now, using the solutions to the Legendre equation
we can construct the solution to the more general
problem:(

1 − 𝑥2
) 𝑑2𝑦

𝑑𝑥2 − 2𝑥
𝑑𝑦

𝑑𝑥

+
[
𝑛(𝑛 + 1) − 𝑚2

1 − 𝑥2

]
𝑦(𝑥) = 0. (9)

This equation is considerably more difficult, and
again, we will just analyze the solution.

Definition 3 (Associated Legendre Polynomials).
Let 𝑚 ∈ ℕ0. The polynomials

𝑃𝑚,𝑛(𝑥) =
(
1 − 𝑥2

)𝑚/2 𝑑𝑚

𝑑𝑥𝑚
𝑃𝑛(𝑥), (10)

are called the associated Legendre polynomials.

Lemma 2. The associated Legendre polynomials
(10) are solutions to the associated Legendre differ-
ential equation (9).

Proof. See appendix. □

2.3 Spherical harmonics
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A PROOFS

A Proofs
A.1 Legendre Polynomials
Lemma 3. The polynomial

𝑃𝑛(𝑥) =
⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 (2𝑛 − 2𝑘)!
2𝑛𝑘!(𝑛 − 𝑘)!(𝑛 − 2𝑘)!𝑥

𝑛−2𝑘,

is a solution to Legendre’s equation(
1 − 𝑥2

) 𝑑2𝑦

𝑑𝑥2 − 2𝑥
𝑑𝑦

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑦(𝑥) = 0

for 𝑛 > 0.

Proof. To solve (6) we use the power series ansatz

𝑦(𝑥) =
∞∑
𝑘=0

𝑎𝑘𝑥
𝑘, (11)

from which follows that

𝑦′ =
∞∑
𝑘=0

𝑘𝑎𝑘𝑥
𝑘−1, and 𝑦′′ =

∞∑
𝑘=0

𝑘(𝑘 − 1)𝑎𝑘𝑥
𝑘−2.

By substituting the above and (11) into (6) we get the
that first term(

1 − 𝑥2
)
𝑦′′ =

(
1 − 𝑥2

) ∞∑
𝑘=0

𝑘(𝑘 − 1)𝑎𝑘𝑥
𝑘−2

=
∞∑
𝑘=0

𝑘(𝑘 − 1)𝑎𝑘𝑥
𝑘−2 + 𝑘(𝑘 − 1)𝑎𝑘𝑥

𝑘

=
∞∑
𝑘=0

[(𝑘 + 1) (𝑘 + 2)𝑎𝑘+2 + 𝑘(𝑘 − 1)𝑎𝑘] 𝑥𝑘,

where in the last step to factor out 𝑥𝑘 we shifted the
index in the coefficients by 2, i.e.

∞∑
𝑘=0

𝑘(𝑘 − 1)𝑎𝑘𝑥
𝑘−2 =

∞∑
𝑘=0

(𝑘 + 2) (𝑘 + 1)𝑎𝑘+2𝑥
𝑘.

Similarly, the second term:

−2𝑥𝑦′ = −2𝑥
∞∑
𝑘=0

𝑘𝑎𝑘𝑥
𝑘−1 =

∞∑
𝑘=0

−2𝑘𝑎𝑘𝑥
𝑘.

Finally, combining the above the complete substitu-
tion yields(

1 − 𝑥2
)
𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0

=⇒
∞∑
𝑘=0

[
(𝑘 + 1) (𝑘 + 2)𝑎𝑘+2 + 𝑘(𝑘 − 1)𝑎𝑘

−2𝑘𝑎𝑘 + 𝑛(𝑛 + 1)𝑎𝑘
]
𝑥𝑘 = 0,

from which we can extract the recurrence relation

(𝑘 + 1) (𝑘 + 2)𝑎𝑘+2 + 𝑘(𝑘 − 1)𝑎𝑘

− 2𝑘𝑎𝑘 + 𝑛(𝑛 + 1)𝑎𝑘 = 0

⇐⇒ 𝑎𝑘+2 =
(𝑘 − 𝑛) (𝑘 + 𝑛 + 1)
(𝑘 + 2)(𝑘 + 1) 𝑎𝑘.

[TODO: finish copying proof]
□
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