\documentclass[xetex, onlymath, aspectratio=169]{beamer} \usefonttheme{serif} \usetheme{hsr} % use lmodern for math \usepackage{lmodern} % math packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{bm} \renewcommand{\vec}[1]{\mathbf{\bm{#1}}} % use plex font for monospaced, roboto for the rest \usepackage[T1]{fontenc} \usepackage{plex-otf} % monospaced % \usepackage{roboto} % other \renewcommand*\familydefault{\sfdefault} \usepackage{graphicx} \usepackage{booktabs} \usepackage{array} % biblopgraphy \usepackage[backend=bibtex, style=ieee]{biblatex} \addbibresource{KugelBSc.bib} % links \usepackage{hyperref} \hypersetup{ % Remove ugly boxes hidelinks, % Set colors colorlinks = true, anchorcolor = black, citecolor = black, filecolor = black, linkcolor = black, menucolor = black, runcolor = black, urlcolor = {black!50!blue}, } % pretty drawings \usepackage{tikz} \usetikzlibrary{calc} \usepackage{xcolor} \usepackage{pgfplots} \pgfplotsset{compat=1.9} % source code \usepackage{listings} %% create a lstlisting style \lstdefinestyle{samplestyle}{ belowcaptionskip=\baselineskip, breaklines=true, frame=none, inputencoding=utf8, % margin xleftmargin=\parindent, % background backgroundcolor=\color{hsr-lightgrey20}, % default language: language=[LaTeX]TeX, showstringspaces=false, % font basicstyle=\ttfamily\small, identifierstyle=\color{hsr-black}, keywordstyle=\color{hsr-blue}, commentstyle=\color{hsr-black40}, stringstyle=\color{hsr-mauve80}, } %% and set the chosen style \lstset{style=samplestyle, escapechar=`} % metadata \title{Spherical Harmonics} \author[NaoPross]{\texttt{Naoki Pross, Manuel Cattaneo}} \date{Spring Semester 2022} \institute[OST]{OST FHO Campus Rapperswil} % \logo{\includegraphics[width=3cm]{figs/hsr-logo}} \AtBeginSection[] { \begin{frame} \frametitle{Table of Contents} \tableofcontents[currentsection] \end{frame} } \begin{document} \frame{ \maketitle } \begin{frame}{Goals for Today} \Large \uncover<1->{\textbf{Spherical Harmonics}} \uncover<2->{\,\textit{and}\, \textbf{Electron Orbitals}} \begin{tikzpicture} \uncover<1->{ \node (i1) { \includegraphics[height=8cm, trim=200 100 50 50, clip]{figures/buchcover} }; } \uncover<2->{ \node (i2) at ($(i1) + (2cm, 0)$) { \nocite{minutephysics_better_2021} \includegraphics[height=65mm]{figures/orbitals-minutephysics} }; } \end{tikzpicture} \end{frame} \section{Fourier on \(\mathbb{R}^2\)} \begin{frame}{Nice Periodic Functions} \begin{columns} \begin{column}{.7\linewidth} \begin{definition} A function \[ f : \mathbb{R}^2 \to \mathbb{C} \] is a ``nice periodic function'' when it is \begin{itemize} \item smooth, \item differentiable, \item \textcolor{gray}{(abs.)} integrable, \item periodic on \([0, 1] \times [0, 1]\), i.e. \[ f(\xi, \eta) = f(\xi + 1, \eta) = f(\xi, \eta + 1). \] \end{itemize} \end{definition} \end{column} \begin{column}{.3\linewidth} \begin{center} \begin{tikzpicture}[ axis/.style = { very thick, -latex, draw = black }, ] \draw[lightgray] (0, 0) grid (3, 3); \draw[axis] (0, 0) -- (3.3, 0) node[right] {\(\xi\)}; \draw[axis] (0, 0) -- (0, 3.3) node[above] {\(\eta\)}; \end{tikzpicture} \end{center} \end{column} \end{columns} \end{frame} \begin{frame}{Function Space} \begin{block}{Basis Functions} The space of nice periodic functions is spanned by the (also nice) functions \[ B_{m, n}(\xi, \eta) = e^{i2\pi m\xi} e^{i2\pi n\eta}. \] \end{block} \end{frame} \begin{frame} \centering \includegraphics[height=.9\paperheight]{figures/flat-basis-functions} \end{frame} \begin{frame}{Inner Product} \begin{definition}<1-> Let \(f(\xi, \eta)\) and \(g(\xi, \eta)\) be nice periodic functions. Their inner product is \[ \langle f, g \rangle = \iint_{[0, 1]^2} f(\xi, \eta) \overline{g}(\xi, \eta) \, d\xi d\eta. \] \end{definition} \begin{definition}<2-> For a nice periodic function \(f(\xi, \eta)\): the numbers \[ c_{m, n} = \langle f, B_{m, n} \rangle \] are the \emph{Fourier coefficients} or \emph{spectrum} of \(f\). \end{definition} \end{frame} \begin{frame}{Fourier Series} \begin{theorem} For nice periodic functions: \[ f(\xi, \eta) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} c_{m, n} B_{m, n} (\xi, \eta) \] where \[ c_{m, n} = \langle f, B_{m, n} \rangle. \] \end{theorem} \end{frame} \begin{frame}{Why exponentials?} \centering {\huge\bfseries\itshape Why \(B_{m, n} = e^{i2\pi m\xi} e^{i2\pi n\eta}\)?} \vspace{3em} {\huge\bfseries\itshape Because {\Huge \(\nabla^2\)} } \end{frame} \begin{frame}{The Problem} \begin{block}{Fourier's Problem}<1-> \[ \nabla^2 f(\xi, \eta) = \frac{\partial^2 f}{\partial \xi^2} + \frac{\partial^2 f}{\partial \eta^2} = \lambda f(\xi, \eta) \] \end{block} \begin{alertblock}{Solution}<2-> Separation ansatz: \[ f(\xi, \eta) = M(\xi) N(\eta) \] Resulting ODEs: \begin{align*} \frac{d^2 M}{d \xi^2} &= \kappa M(\xi), & \frac{d^2 N}{d \eta^2} &= (\lambda - \kappa) N(\eta) \end{align*} \end{alertblock} \end{frame} \section{The functions \(Y_{m, n}(\varphi, \vartheta)\)} \begin{frame}{Spherical Coordinates} \begin{columns} \begin{column}{.6\linewidth} \includegraphics[height=.9\paperheight]{figures/spherical-coordinates} \end{column} \begin{column}{.4\linewidth} \noindent Variables \begin{align*} r &\in \mathbb{R}^+ \\ \vartheta &\in [0, \pi] \\ \varphi &\in [0, 2\pi) \end{align*} To cartesian \begin{align*} x &= r\cos\varphi \sin\vartheta \\ y &= r\sin\varphi\sin\vartheta \\ z &= r\cos\vartheta \end{align*} \end{column} \end{columns} \end{frame} \begin{frame}{Spherical Laplacian} \uncover<1->{ Cartesian Laplacian \[ \nabla^2 := \frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} \] } \uncover<2->{ Spherical Laplacian \[ \nabla^2 := \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \onslide<3-> \underbrace{ \onslide<2-> \left[ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right) + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2} \right] \onslide<3-> }_{\text{Surface Spherical Laplacian}~ \nabla^2_s} \onslide<2-> \] } \uncover<4->{ Surface Spherical Laplacian \[ \nabla^2_s := r^2 \nabla^2 - \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) \] } \end{frame} \begin{frame}[fragile]{Geometrical Intuition} \only<1>{ \begin{center} \begin{tikzpicture} \begin{axis}[ clip = false, width = .8\linewidth, height = .8\paperheight, xtick = \empty, ytick = \empty, colormap name = viridis, axis lines = middle, axis line style = {ultra thick, -latex} ] \addplot+[ smooth, mark=none, line width = 3pt, mesh, point meta=explicit, ] file {figures/laplacian-1d.dat}; \end{axis} \end{tikzpicture} \end{center} } \only<2>{ \includegraphics[width=\linewidth]{figures/laplacian-3d} } \only<3>{ \begin{center} \includegraphics[height=.7\paperheight]{figures/laplacian-sphere} \end{center} } \end{frame} \begin{frame}{Where is \(\nabla^2_s\) useful?} To do brain scans, apparently \cite{carvalhaes_surface_2015} \begin{center} \only<1>{ \includegraphics[width=.8\linewidth, clip, trim=0 20 0 20]{figures/eeg-photo} \nocite{baburov__2009} % \caption{Electroencephalogram (EEG). Image from Wikimedia \cite{baburov__2009}.} } \only<2>{ \includegraphics[width=\linewidth]{figures/surface-laplacian-eeg} \nocite{ries_role_2013} % \caption{Surface Laplacian in EEG. Taken from \cite{ries_role_2013}.} } \end{center} \end{frame} \begin{frame}{Brain Scans} \begin{columns} \begin{column}{.6\linewidth} Electrodynamics \begin{align*} \onslide<1->{ \nabla^2 \phi &= \bm{\nabla \cdot} \bm{\nabla} \phi \qquad \color{lightgray} \left( \phi = \int_\mathsf{A}^\mathsf{B} \vec{E} \bm{\cdot} d\vec{l} \right) \\ } \onslide<2->{ &= \bm{\nabla \cdot} \vec{E} \\ } \onslide<3->{ &\color{lightgray}= \int_{\Omega} (\bm{\nabla \cdot} \vec{E}) \bm{\cdot} d\vec{s} = \oint_{\partial \Omega} \vec{E} \bm{\cdot} d\vec{s} \\ } \onslide<4->{ &= \frac{\rho}{\varepsilon} } \end{align*} \uncover<5->{ So over the scalp \[ \nabla^2_s \phi = \frac{\rho_s}{\varepsilon} = \text{Current flow in the brain} \] } \end{column} \begin{column}{.4\linewidth} \uncover<2->{ \centering \includegraphics[width=\linewidth]{figures/flux} \nocite{maschen_divergence_2013} } \end{column} \end{columns} \end{frame} \begin{frame}{New Hard Problem} \begin{block}{The Problem}<1-> \only<1>{ \[ \nabla^2_s f(\varphi, \vartheta) = \lambda f(\varphi, \vartheta) \] } \only<2->{ \[ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial f}{\partial\vartheta} \right) + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2} = \lambda f(\varphi, \vartheta) \] } \end{block} \begin{alertblock}{Idea}<3-> Separation ansatz: \[ f(\varphi, \vartheta) = \Phi(\varphi) \Theta(\vartheta) \] From the ``easy'' part: \[ \frac{d^2\Phi}{d\varphi^2} = \kappa \Phi(\varphi) \implies \Phi(\varphi) = e^{im\varphi}, \quad \textcolor{gray}{m \in \mathbb{Z}} \] \end{alertblock} \end{frame} \begin{frame}{Associated Legendre Differential Equation} \begin{alertblock}{Separation (cont.)}<1-> The hard part is the ODE for \(\Theta(\vartheta)\): \[ \sin^2\vartheta \frac{d^2 \Theta}{d (\cos\vartheta)^2} - 2\cos\theta \frac{d \Theta}{d \cos\vartheta} + \left[ n(n+1) - \frac{m^2}{\sin^2 \vartheta} \right] \Theta(\cos\vartheta) = 0 \] \end{alertblock} \uncover<2->{ Substituting \(x = \cos\vartheta\) and \(y = \Theta\): } \begin{definition}<2->[Associated Legendre Differential Equation] \[ \left( 1 - x^2 \right) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + \left[ n(n+1) - \frac{m^2}{1 - x^2} \right] y(x) = 0 \] \end{definition} \end{frame} \begin{frame}{Legendre Polynomials} \begin{definition}[Legendre Polynomials] The polynomials \begin{align*} P_n(x) &= \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k (2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k} \\[1em] &= {}_2F_1 \left( \begin{matrix} n + 1, & -n \\ \multicolumn{2}{c}{1} \end{matrix} ; \frac{1 - x}{2} \right) \\[1em] &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(x^2-1)^n \end{align*} are a solution to the associated Legendre differential equation when \(m = 0\). \end{definition} \end{frame} \begin{frame} \centering \includegraphics[height=\paperheight]{figures/legendre-polynomials} \end{frame} \begin{frame}{Associated Legendre Polynomials} \begin{lemma} For \(x \in [-1, 1]\) the polynomials \[ P_{m, n} (x) = \left( 1 - x^2 \right)^{m/2} \frac{d^{m}}{dx^{m}} P_n (x) \] solve the associated Legendre differential equation. \end{lemma} \begin{alertblock}{Observation}<2-> If \(m > n\) then \(P_{m, n}(x) = 0\) for all \(x\). \end{alertblock} \end{frame} \begin{frame} \centering \includegraphics[height=\paperheight]{figures/associated-legendre-polynomials} \end{frame} \begin{frame}{Putting it back together} \begin{block}{The Problem} \[ \nabla^2_s f(\varphi, \vartheta) = \lambda f(\varphi, \vartheta) \] \end{block} \begin{alertblock}{Current solution} For \(m \in \mathbb{Z}\) and \(m < n\): \[ \tilde{Y}_{m, n}(\varphi, \vartheta) = \Phi(\varphi) \Theta(\vartheta) = e^{im\varphi} P_{m, n}(\cos\vartheta) \] \end{alertblock} \end{frame} \begin{frame}{What do they look like?} \Large \bfseries Python Magic \end{frame} \bgroup \setbeamercolor{background canvas}{bg=black} \setbeamertemplate{navigation symbols}{} \begin{frame}{Intuition of conditions for \(m\) and \(n\)} \end{frame} \egroup \begin{frame}{Research Question} \begin{block}{Recurrence Relation(s)?} \begin{align*} \tilde{Y}_{m+1, n} &\stackrel{?}{=} f(\tilde{Y}_{m, n}, \tilde{Y}_{m-1, n}, \tilde{Y}_{m, n-1}, \ldots) \\ \tilde{Y}_{m, n+1} &\stackrel{?}{=} f(\tilde{Y}_{m, n}, \tilde{Y}_{m-1, n}, \tilde{Y}_{m, n-1}, \ldots) \\ \tilde{Y}_{m+1, n+1} &\stackrel{?}{=} f(\tilde{Y}_{m, n}, \tilde{Y}_{m-1, n}, \tilde{Y}_{m, n-1}, \ldots) \end{align*} \end{block} \end{frame} \section{Fourier on \(S^2\)} \begin{frame}{Basis functions?} The functions \(\tilde{Y}_{m, n}\) span the space of nice functions \(S^2 \to \mathbb{C}\). \begin{definition}<2-> The inner product of nice functions \(f(\varphi, \vartheta)\) and \(g(\varphi, \vartheta)\) from \(S^2\) to \(\mathbb{C}\) is \[ \langle f, g \rangle = \iint_{S^2} f(\varphi, \vartheta) \overline{g}(\varphi, \vartheta) \, d\Omega \uncover<3->{ = \int\limits_0^{2\pi} \int\limits_0^{\pi} f(\varphi, \vartheta) \overline{g}(\varphi, \vartheta) \sin\vartheta \, d\vartheta d\varphi } \] \end{definition} \end{frame} \begin{frame}{Orthonormality} \begin{definition}<1-> A set of basis functions are \emph{orthonormal} if \[ \langle B_{m, n}, B_{m', n'} \rangle = \begin{cases} 1 & m = m' \wedge n = n' \\ 0 & \text{else} \end{cases} \] \end{definition} \begin{alertblock}{Problem}<2-> \[ \langle \tilde{Y}_{m, n}, \tilde{Y}_{m', n'} \rangle = \begin{cases} \displaystyle \frac{4 \pi}{2n+1} \frac{(n+m)!}{(n-m)!} & m = m' \wedge n = n' \\ 0 & \text{else} \end{cases} \] \end{alertblock} \end{frame} \begin{frame}{Spherical Harmonics} \begin{definition}<1-> The orthonormal spherical harmonics are \[ Y_{m, n}(\varphi, \vartheta) = N_{m, n} e^{im\varphi} P_{m, n}(\cos\vartheta) \] where the normalisation constant % FIXME: (-1)^m \[ N_{m, n} = \sqrt{\frac{2n+1}{4 \pi} \frac{(n-m)!}{(n+m)!}} \] \end{definition} \begin{alertblock}{Fixed}<1-> \[ \langle Y_{m, n}, Y_{m', n'} \rangle = \begin{cases} 1 & m = m' \wedge n = n' \\ 0 & \text{else} \end{cases} \] \end{alertblock} \end{frame} \begin{frame}{Fourier Series} \begin{theorem} For nice periodic functions on \(S^2\): \[ f(\varphi, \vartheta) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} c_{m, n} Y_{m, n} (\varphi, \vartheta) \] where \[ c_{m, n} = \langle f, Y_{m, n} \rangle. \] \end{theorem} \end{frame} \section{Quantum Mechanics} \begin{frame}{Linear and Rotational Kinetic Energy} \begin{columns} \begin{column}{.5\linewidth} \begin{block}{Momentum and KE}<1-> \[ \vec{p} = m \vec{v}, \quad E_k = \frac{\vec{p}^2}{2m} \] \end{block} \begin{alertblock}{QM Formulation}<3-> \[ \vec{\hat{p}} = -i\hbar \bm{\nabla}, \quad \hat{E}_k = -\frac{\hbar^2}{2m} \nabla^2 \] \end{alertblock} \end{column} \begin{column}{.5\linewidth}<2-> \begin{block}{Angular Momentum and KE} \[ \vec{L} = \vec{r}\bm{\times}{\vec{p}}, \quad E_{k, a} = \frac{\vec{L}^2}{2m r^2} \] \end{block} \begin{alertblock}{QM Formulation}<4-> Pretty long derivation yields: \begin{align*} % \hat{L}_z &= -i \hbar \frac{\partial}{\partial \varphi}, \\[1em] \hat{E}_{k, a} &= -\frac{\hbar^2}{2mr^2} \nabla^2_s \end{align*} \end{alertblock} \end{column} \end{columns} \end{frame} \iffalse \begin{frame}{Intuition for the Operators} \begin{columns} \begin{column}{.5\linewidth} \begin{block}{Plane wave}<1-> \[ \Psi(\vec{x}, t) = \exp i(\vec{k} \bm{\cdot} \vec{x} + \omega t ) \] \end{block} \begin{block}{Spatial derivative}<2-> \begin{align*} \uncover<2->{ \bm{\nabla} \Psi(\vec{x}, t) &= \bm{\nabla} \exp i(\vec{k} \bm{\cdot} \vec{x} + \omega t ) \\ } \uncover<3->{ &= ik \exp i(\vec{k} \bm{\cdot} \vec{x} + \omega t ) \\ &= ik \Psi(\vec{x}, t) } \end{align*} \end{block} \end{column} \begin{column}{.5\linewidth} \end{column} \end{columns} \end{frame} \fi \bgroup \setbeamercolor{background canvas}{bg=black} \setbeamertemplate{navigation symbols}{} \begin{frame}{Intuition for the Operators} \end{frame} \egroup \begin{frame}{Schrödinger Equation} \begin{block}{Time independent SE} \[ % hamiltonina \only<1>{ \mathrm{\hat{\mathcal{H}}} | \Psi \rangle = E | \Psi \rangle } % KE + U \only<2>{ \left( \hat{E}_k + U \right) | \Psi \rangle = E | \Psi \rangle } % KE with p \only<3>{ \left( \frac{\vec{\hat{p}}^2}{2m} + U \right) | \Psi \rangle = E | \Psi \rangle } % KE with p as 1D derivative \only<4>{ \text{Meili} \qquad \left[ - \frac{\hbar^2}{2m} \frac{d^2}{d x^2} + U(x) \right] \Psi(x) = E \Psi(x) } % KE with p as 3D derivative \only<5>{ \text{3D} \qquad \left[ - \frac{\hbar^2}{2m} \nabla^2 + U(\vec{x}) \right] \Psi(\vec{x}) = E \Psi(\vec{x}) } % Decompose laplacian \only<6>{ \left\{ - \frac{\hbar^2}{2m} \frac{1}{r^2} \left[ \nabla^2_s - \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) \right] + U(\vec{r}) \right\} \Psi(\vec{r}) = E \Psi(\vec{r}) } % rewrite using L \only<7>{ \left[ \frac{\vec{\hat{L}}^2}{2mr^2} + \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + U(\vec{r}) \right] \Psi(\vec{r}) = E \Psi(\vec{r}) } % rewrite using E_ka \only<8>{ \left[ \hat{E}_{k,a} + \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + U(\vec{r}) \right] \Psi(\vec{r}) = E \Psi(\vec{r}) } % What is KE \only<9>{ \Bigg[ \underbrace{\hat{E}_{k,a} + \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right)}_\text{Kinetic Energy} +\, U(\vec{r}) \Bigg] \Psi(\vec{r}) = E \Psi(\vec{r}) } % Introduce E_kr \only<10>{ \Bigg[ \hat{E}_{k,a} + \underbrace{\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right)}_{\text{Radial KE } \hat{E}_{k, r}} + U(\vec{r}) \Bigg] \Psi(\vec{r}) = E \Psi(\vec{r}) } \only<11->{ \left\{ \hat{E}_{k,a} + \hat{E}_{k,r} + U(\vec{r}) \right\} \Psi(\vec{r}) = E \Psi(\vec{r}) } \] \end{block} \begin{columns} \begin{column}{.6\linewidth} \Large \uncover<6>{ \Large \textit{But why?} \\[2em] } \uncover<6>{ \bfseries Hydrogen atom has radial symmetry! } \end{column} \begin{column}{.35\linewidth} \uncover<6>{ \includegraphics[width=\linewidth]{figures/hydrogen} \nocite{depiep_electron_2013} } \end{column} \end{columns} \end{frame} \begin{frame}{Electron Orbitals} \end{frame} % \section{Other applications} \begin{frame}{Bibliography} \renewcommand*{\bibfont}{\scriptsize} \printbibliography \end{frame} \end{document} % vim:et:ts=2:sw=2:wrap:nolinebreak: