aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-04-29 17:36:51 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-04-29 17:36:51 +0200
commit198d6bf1a4d2076025bcb3a6fe7f46948187c5bf (patch)
tree9bab23c27a004d24ace419651b0b64fd7863ff38
parentadd new slides (diff)
downloadSeminarMatrizen-198d6bf1a4d2076025bcb3a6fe7f46948187c5bf.tar.gz
SeminarMatrizen-198d6bf1a4d2076025bcb3a6fe7f46948187c5bf.zip
new slides
Diffstat (limited to '')
-rw-r--r--vorlesungen/09_mseliegruppen/slides.tex8
-rw-r--r--vorlesungen/slides/7/Makefile.inc5
-rw-r--r--vorlesungen/slides/7/chapter.tex5
-rw-r--r--vorlesungen/slides/7/haar.tex84
-rw-r--r--vorlesungen/slides/7/hopf.tex69
-rw-r--r--vorlesungen/slides/7/qdreh.tex110
-rw-r--r--vorlesungen/slides/7/quaternionen.tex74
-rw-r--r--vorlesungen/slides/7/ueberlagerung.tex98
-rw-r--r--vorlesungen/slides/test.tex8
9 files changed, 458 insertions, 3 deletions
diff --git a/vorlesungen/09_mseliegruppen/slides.tex b/vorlesungen/09_mseliegruppen/slides.tex
index 1ae259f..0fb6adc 100644
--- a/vorlesungen/09_mseliegruppen/slides.tex
+++ b/vorlesungen/09_mseliegruppen/slides.tex
@@ -16,13 +16,19 @@
\folie{7/semi.tex}
% Zusammenhangskomponenten
+\folie{7/zusammenhang.tex}
-% XXX Hopf-Faserung für SO(2) -> SU(2) -> SO(3)
+% XXX Hopf-Faserung für SO(2) -> SU(2)=S^3 -> S^2
+\folie{7/quaternionen.tex}
+\folie{7/qdreh.tex}
+\folie{7/ueberlagerung.tex}
+\folie{7/hopf.tex}
% curled up dimensions in String theory
\section{Haar-Mass}
+\folie{7/haar.tex}
% Definition Haar-Mass
% Mittelung
%
diff --git a/vorlesungen/slides/7/Makefile.inc b/vorlesungen/slides/7/Makefile.inc
index 3e99415..7512612 100644
--- a/vorlesungen/slides/7/Makefile.inc
+++ b/vorlesungen/slides/7/Makefile.inc
@@ -19,5 +19,10 @@ chapter5 = \
../slides/7/kommutator.tex \
../slides/7/dg.tex \
../slides/7/zusammenhang.tex \
+ ../slides/7/quaternionen.tex \
+ ../slides/7/qdreh.tex \
+ ../slides/7/ueberlagerung.tex \
+ ../slides/7/hopf.tex \
+ ../slides/7/haar.tex \
../slides/7/chapter.tex
diff --git a/vorlesungen/slides/7/chapter.tex b/vorlesungen/slides/7/chapter.tex
index 7f9f72a..1c78ccc 100644
--- a/vorlesungen/slides/7/chapter.tex
+++ b/vorlesungen/slides/7/chapter.tex
@@ -18,3 +18,8 @@
\folie{7/kommutator.tex}
\folie{7/dg.tex}
\folie{7/zusammenhang.tex}
+\folie{7/quaternionen.tex}
+\folie{7/qdreh.tex}
+\folie{7/ueberlagerung.tex}
+\folie{7/hopf.tex}
+\folie{7/haar.tex}
diff --git a/vorlesungen/slides/7/haar.tex b/vorlesungen/slides/7/haar.tex
new file mode 100644
index 0000000..454dd69
--- /dev/null
+++ b/vorlesungen/slides/7/haar.tex
@@ -0,0 +1,84 @@
+%
+% haar.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Haar-Mass}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Invariantes Mass}
+Auf jeder lokalkompakten Gruppe $G$ gibt es ein \only<2->{invariantes }%
+Integral
+\begin{align*}
+\uncover<2->{\text{rechts:}}&&
+\int_G f(g)\,d\mu(g)
+&\uncover<2->{=
+\int_G f(gh)\,d\mu(g)}
+\\
+\uncover<3->{
+\text{links:}&&
+\int_G f(g)\,d\mu(g)
+&=
+\int_G f(hg)\,d\mu(g)}
+\end{align*}
+
+\end{block}
+\uncover<7->{%
+\begin{block}{Modulus-Funktion}
+$\mu$ linksinvariant, dann ist die Rechtsverschiebung ebenfalls
+linksinvariant
+\[
+\int_G f(gh) \, d\mu(g)
+\uncover<8->{
+=
+\int_G f(g) \Delta(h)\, d\mu(g)
+}
+\]
+\uncover<9->{$\Delta(h)$ heisst Modulus-Funktion}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Beispiel: $G=\mathbb{R}$}
+\[
+\int_Gf(g)\,d\mu(g)
+=
+\int_{-\infty}^{\infty} f(x)\,dx
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Beispiel: $\operatorname{SO}(2)$}
+\[
+\int_{\operatorname{SO}(2)}
+f(g)\,d\mu(g)
+=
+\frac{1}{2\pi}
+\int_{0}^{2\pi} f(D_{\alpha})\,d\alpha
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<6->{%
+\begin{block}{Beispiel: $G$ endlich}
+\[
+\int_G f(g)\,d\mu(g) = \frac{1}{|G|}\sum_{g\in G}f(g)
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<10->{%
+\begin{block}{Unimodular}
+$\Delta(h)=1$ heisst rechtsinvariant = linksinvariant
+\\
+\uncover<11->{%
+$G$ kompakt $\Rightarrow$ unimodular
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/hopf.tex b/vorlesungen/slides/7/hopf.tex
new file mode 100644
index 0000000..a90737f
--- /dev/null
+++ b/vorlesungen/slides/7/hopf.tex
@@ -0,0 +1,69 @@
+%
+% hopf.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Orbit-Räume}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aktion von $\operatorname{SO}(3)$ auf $S^2$}
+\begin{align*}
+S^2 &= \{x\in\mathbb{R}^3\;|\; |x|=1\}
+\\
+\operatorname{SO}(3) \times S^2 &\to S^2: (g, x) \mapsto gx
+\end{align*}
+\uncover<2->{%
+Allgemein: Aktion von $G$ auf $X$
+\begin{align*}
+\text{links:}&&
+G\times X \to X &: (g,x) \mapsto gx
+\\
+\text{rechts:}&&
+X\times G \to X &: (x,g) \mapsto xg
+\end{align*}}
+\end{block}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{block}{Stabilisator}
+Zu $x\in X$ gibt es eine Untergruppe
+\begin{align*}
+G_x = \{g\in G\;|\; gx=x\},
+\end{align*}
+der {\em Stabilisator} von $x$.
+
+\uncover<4->{%
+Der Stabilisator von $v\in S^2$ ist die Gruppe der Drehungen um
+die Achse $v$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Quotient}
+$G$ operiert von rechts auf $X$
+\[
+X/G = \{ xG \;|\; x\in X\}
+\]
+heisst Quotient
+\end{block}}
+\uncover<6->{
+\begin{block}{$\operatorname{SO}(3)/\operatorname{SO}(2)$}
+Wähle $\operatorname{SO}(2)$ als Drehungen um die $z$-Achse:
+\[
+\operatorname{SO}(3) \to S^2
+:
+g \mapsto \text{letzte Spalte von $g$}
+\]
+\uncover<7->{Daher
+\[
+S^2 \cong \operatorname{SO}(3) / \operatorname{SO}(2)
+\]}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/qdreh.tex b/vorlesungen/slides/7/qdreh.tex
new file mode 100644
index 0000000..8ed512a
--- /dev/null
+++ b/vorlesungen/slides/7/qdreh.tex
@@ -0,0 +1,110 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehungen mit Quaternionen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Drehung?}
+Abbildung von $\vec{x}$ mit $\operatorname{Re}\vec{x}=0$:
+\[
+\varrho_{q}
+\colon
+\vec{x}\mapsto q\vec{x}q^{-1} = q\vec{x}\overline{q}
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Achse}
+\begin{align*}
+\varrho_q(q)
+&=
+qq\overline{q}
+\uncover<3->{=
+q(qq^{-1})}
+\uncover<4->{=
+q}
+\end{align*}
+\end{block}}
+\uncover<4->{%
+\begin{block}{Norm}
+\begin{align*}
+|\varrho_q(\vec{x})|^2
+&=
+q\vec{x}\overline{q}\overline{(q\vec{x}\overline{q})}
+\uncover<5->{=
+q\vec{x}\overline{q}\overline{\overline{q}}\overline{\vec{x}}\overline{q}
+}
+\\
+&\uncover<6->{=
+q\vec{x}(\overline{q}q)\overline{\vec{x}}\overline{q}}
+\uncover<7->{=
+q(\vec{x}\overline{\vec{x}})\overline{q}}
+\uncover<8->{=
+q\overline{q}|\vec{x}|^2}
+\\
+&\uncover<9->{=
+|\vec{x}|^2}
+\end{align*}
+\uncover<10->{%
+$\Rightarrow$ $\varrho_q\in\operatorname{O}(3)$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Drehung!}
+$\vec{a},\vec{b},\vec{n}$ bilden ein on.~Rechtssystem
+\begin{align*}
+\uncover<12->{
+qa
+&=
+c\vec{a}+s\vec{n}\times \vec{a}}
+\uncover<13->{=
+c\vec{a} + s\vec{b}}
+\\
+\uncover<14->{
+q\vec{a}\overline{q}
+&=
+(c\vec{a}+s\vec{b}) c
+-(c\vec{a}+s\vec{b})\times s\vec{n}}
+\\
+&\uncover<15->{=
+c^2 \vec{a}+ sc\vec{b}
++sc\vec{b} - s^2 \vec{a}}
+\\
+&\uncover<16->{=
+\vec{a} \cos\alpha +\vec{b} \sin\alpha }
+\end{align*}
+\vspace{-5pt}
+\uncover<17->{wegen
+%\vspace{-5pt}
+\[
+\begin{aligned}
+\cos\alpha &= \cos^2\frac{\alpha}2 - \sin^2\frac{\alpha}2 &&=c^2-s^2
+\\
+\sin\alpha &= 2\cos\frac{\alpha}2\sin\frac{\alpha}2&&=2cs
+\end{aligned}\]}
+\end{block}}
+\vspace{-18pt}
+\uncover<18->{%
+\begin{block}{Matrix}
+\[
+D
+=
+\tiny
+\begin{pmatrix}
+1-2(q_2^2+q_3^2)&-2q_0q_3+2q_1q_2&-2q_0q_2+2q_1q_3\\
+ 2q_0q_3+2q_1q_2&1-2(q_1^2+q_3^2)&-2q_0q_1+2q_2q_3\\
+-2q_0q_2+2q_1q_3& 2q_0q_1+2q_2q_3&1-2(q_1^2+q_2^2)
+\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/quaternionen.tex b/vorlesungen/slides/7/quaternionen.tex
new file mode 100644
index 0000000..f526366
--- /dev/null
+++ b/vorlesungen/slides/7/quaternionen.tex
@@ -0,0 +1,74 @@
+%
+% quaternionen.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Quaternionen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Quaternionen}
+$4$-dimensionaler $\mathbb{R}$-Vektorraum
+\[
+\mathbb{H}
+=
+\langle 1,i,j,k\rangle_{\mathbb{R}}
+\]
+mit Rechenregeln
+\[
+i^2=j^2=k^2=ijk=-1
+\]
+$x=x_0+x_1i+x_2j+x_3k\in\mathbb{H}$
+\begin{itemize}
+\item<2-> Realteil: $\operatorname{Re}x=x_0$
+\item<3-> Vektorteil: $\operatorname{Im}x=x_1i+x_2j+x_3k$
+\item<4-> Konjugation: $\overline{x}=\operatorname{Re}x-\operatorname{Im}x$
+\item<5-> Norm: $|x|^2 = x\overline{x} = x_0^2+x_1^2+x_2^2+x_3^2$
+\item<6-> Inverse: $x^{1}= \overline{x}/x\overline{x}$
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.50\textwidth}
+\uncover<7->{%
+\begin{block}{Skalarprodukt und Vektorprodukt}
+\begin{align*}
+pq
+&=
+\operatorname{Re}p \operatorname{Re}q
+-
+\operatorname{Im}p\cdot \operatorname{Im}q
+\\
+&\phantom{=}
++
+\operatorname{Re}p\operatorname{Im}q
++
+\operatorname{Im}p\operatorname{Re}q
++
+\operatorname{Im}p\times\operatorname{Im}q
+\end{align*}
+\end{block}}
+\uncover<8->{%
+\begin{block}{Einheitsquaternionen}
+$q\in \mathbb{H}$, $|q|=1, q^{-1}=\overline{q}$
+\end{block}}
+\uncover<9->{%
+\begin{block}{Polardarstellung}
+\[
+q = \cos\frac{\alpha}2 + \vec{n} \sin\frac{\alpha}2
+\]
+\vspace{-8pt}
+\begin{itemize}
+\item<10->
+Drehmatrix: 9 Parameter, 6 Bedingungen
+\item<11->
+Quaternionen: 4 Parameter, 1 Bedingung
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/ueberlagerung.tex b/vorlesungen/slides/7/ueberlagerung.tex
new file mode 100644
index 0000000..426641a
--- /dev/null
+++ b/vorlesungen/slides/7/ueberlagerung.tex
@@ -0,0 +1,98 @@
+%
+% ueberlagerung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$S^3$, $\operatorname{SU}(2)$ und $\operatorname{SO}(3)$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.38\textwidth}
+\uncover<6->{%
+\begin{block}{Überlagerung}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A) at (0,0);
+\coordinate (B) at (2,0);
+\coordinate (C) at (2,-2);
+\coordinate (D) at (0,-2);
+
+\uncover<7->{
+\node at (A) {$\{\pm 1\}\mathstrut$};
+}
+\uncover<6->{
+\node at (B) {$S^3\mathstrut$};
+\node at ($(B)+(0.1,0)$) [right] {$=\operatorname{SU}(2)\mathstrut$};
+}
+\uncover<7->{
+\node at (C) {$\operatorname{SO}(3)\mathstrut$};
+\node at (D) {$\{I\}\mathstrut$};
+}
+
+\uncover<7->{
+\draw[->,shorten >= 0.3cm,shorten <= 0.5cm] (A) -- (B);
+\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (A) -- (D);
+\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (B) -- (C);
+\draw[->,shorten >= 0.6cm,shorten <= 0.3cm] (D) -- (C);
+}
+
+\end{tikzpicture}
+\end{center}
+\begin{itemize}
+\item<7->
+$\pm q\in S^3$ $\Rightarrow$ $\varrho_{q}=\varrho_{-q}$
+\item<8->
+In der Nähe von $I$ sehen die Gruppen
+$\operatorname{SO}(3)$
+und
+$\operatorname{SU}(2)$
+``gleich'' aus
+\item<9->
+$\operatorname{SU}(2)$ ist geometrisch ``einfacher''
+\end{itemize}
+\end{block}}
+\end{column}
+\begin{column}{0.58\textwidth}
+\begin{block}{Pauli-Matrizen}
+Quaternionen als $2\times 2$-Matrizen schreiben
+\begin{align*}
+1&=\begin{pmatrix}1&0\\0&1\end{pmatrix}=\sigma_0,
+&
+i&=\begin{pmatrix}0&i\\i&0\end{pmatrix}=-i\sigma_1
+\\
+j&=\begin{pmatrix}0&-1\\1&0\end{pmatrix}=-i\sigma_2,
+&
+k&=\begin{pmatrix}i&0\\0&-i\end{pmatrix}=-i\sigma_3
+\end{align*}
+\uncover<2->{%
+erfüllen $i^2=j^2=k^2=ijk=-1$.}
+\end{block}
+\uncover<3->{%
+\begin{block}{$S^3 = \operatorname{SU}(2)$}
+\[
+a+bi+cj+dk
+=
+\begin{pmatrix}
+a+id&-c+bi\\
+c+ib&a-id
+\end{pmatrix}
+=
+A
+\]
+\begin{align*}
+\uncover<4->{
+\det A &= a^2 + b^2 + c^2 + d^2 = 1
+}
+\\
+\uncover<5->{
+A^* &= a - ib - jc - kd
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index 0c13de0..17c8a28 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -3,5 +3,9 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-
-\folie{7/zusammenhang.tex}
+\folie{7/mannigfaltigkeit.tex}
+\folie{7/haar.tex}
+\folie{7/quaternionen.tex}
+\folie{7/qdreh.tex}
+\folie{7/ueberlagerung.tex}
+\folie{7/hopf.tex}