aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-04-11 10:30:05 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-04-11 10:30:05 +0200
commit15881729aa3f1293d546a1692a02094ed3f24e2b (patch)
tree7a051091d6f507ad3ab28dbd227206ad1288f368
parentphasen (diff)
downloadSeminarMatrizen-15881729aa3f1293d546a1692a02094ed3f24e2b.tar.gz
SeminarMatrizen-15881729aa3f1293d546a1692a02094ed3f24e2b.zip
phases
-rw-r--r--vorlesungen/slides/7/ableitung.tex40
-rw-r--r--vorlesungen/slides/7/dg.tex36
-rw-r--r--vorlesungen/slides/7/drehung.tex53
-rw-r--r--vorlesungen/slides/7/einparameter.tex18
-rw-r--r--vorlesungen/slides/7/kommutator.tex147
-rw-r--r--vorlesungen/slides/7/kurven.tex31
-rw-r--r--vorlesungen/slides/7/liealgebra.tex27
-rw-r--r--vorlesungen/slides/7/mannigfaltigkeit.tex12
-rw-r--r--vorlesungen/slides/7/parameter.tex51
-rw-r--r--vorlesungen/slides/7/semi.tex34
-rw-r--r--vorlesungen/slides/test.tex4
11 files changed, 301 insertions, 152 deletions
diff --git a/vorlesungen/slides/7/ableitung.tex b/vorlesungen/slides/7/ableitung.tex
index b061b9a..12f9084 100644
--- a/vorlesungen/slides/7/ableitung.tex
+++ b/vorlesungen/slides/7/ableitung.tex
@@ -12,49 +12,55 @@
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{block}{Ableitung in $\operatorname{O}(n)$}
+\uncover<2->{%
$s \mapsto A(s)\in\operatorname{O}(n)$
+}
\begin{align*}
-I
+\uncover<3->{I
&=
-A(s)^tA(s)
+A(s)^tA(s)}
\\
-0
+\uncover<4->{0
=
\frac{d}{ds} I
&=
-\frac{d}{ds} (A(s)^t A(s))
+\frac{d}{ds} (A(s)^t A(s))}
\\
-&=
-\dot{A}(s)^tA(s) + A(s)^t \dot{A}(s)
-\intertext{An der Stelle $s=0$, d.~h.~$A(0)=I$}
-0
+&\uncover<5->{=
+\dot{A}(s)^tA(s) + A(s)^t \dot{A}(s)}
+\intertext{\uncover<6->{An der Stelle $s=0$, d.~h.~$A(0)=I$}}
+\uncover<7->{0
&=
\dot{A}(0)^t
+
-\dot{A}(0)
+\dot{A}(0)}
\\
-\Leftrightarrow
+\uncover<8->{\Leftrightarrow
\qquad
-\dot{A}(0)^t &= -\dot{A}(0)
+\dot{A}(0)^t &= -\dot{A}(0)}
\end{align*}
+\uncover<9->{%
``Tangentialvektoren'' sind antisymmetrische Matrizen
+}
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
\begin{block}{Ableitung in $\operatorname{SL}_2(\mathbb{R})$}
+\uncover<2->{%
$s\mapsto A(s)\in\operatorname{SL}_n(\mathbb{R})$
+}
\begin{align*}
-1 &= \det A(t)
+\uncover<3->{1 &= \det A(t)}
\\
-0
+\uncover<10->{0
=
\frac{d}{dt}1
&=
-\frac{d}{dt} \det A(t)
-\intertext{mit dem Entwicklungssatz kann man nachrechnen:}
-0&=\operatorname{Spur}\dot{A}(0)
+\frac{d}{dt} \det A(t)}
+\intertext{\uncover<11->{mit dem Entwicklungssatz kann man nachrechnen:}}
+\uncover<12->{0&=\operatorname{Spur}\dot{A}(0)}
\end{align*}
-``Tangentialvektoren'' sind spurlose Matrizen
+\uncover<13->{``Tangentialvektoren'' sind spurlose Matrizen}
\end{block}
\end{column}
\end{columns}
diff --git a/vorlesungen/slides/7/dg.tex b/vorlesungen/slides/7/dg.tex
index 36b1ade..a99cebb 100644
--- a/vorlesungen/slides/7/dg.tex
+++ b/vorlesungen/slides/7/dg.tex
@@ -15,29 +15,35 @@
Ableitung von $\gamma(t)$ an der Stelle $t$:
\begin{align*}
\dot{\gamma}(t)
-&=
+&\uncover<2->{=
\frac{d}{d\tau}\gamma(\tau)\bigg|_{\tau=t}
+}
\\
-&=
+&\uncover<3->{=
\frac{d}{ds}
\gamma(t+s)
\bigg|_{s=0}
+}
\\
-&=
+&\uncover<4->{=
\frac{d}{ds}
\gamma(t)\gamma(s)
\bigg|_{s=0}
+}
\\
-&=
+&\uncover<5->{=
\gamma(t)
\frac{d}{ds}
\gamma(s)
\bigg|_{s=0}
-=
+}
+\uncover<6->{=
\gamma(t) \dot{\gamma}(0)
+}
\end{align*}
\end{block}
\vspace{-10pt}
+\uncover<7->{%
\begin{block}{Differentialgleichung}
\vspace{-10pt}
\[
@@ -47,33 +53,39 @@ Ableitung von $\gamma(t)$ an der Stelle $t$:
\quad
A=\dot{\gamma}(0)\in LG
\]
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.50\textwidth}
+\uncover<8->{%
\begin{block}{Lösung}
Exponentialfunktion
\[
\exp\colon LG\to G : A \mapsto \exp(At) = \sum_{k=0}^\infty \frac{t^k}{k!}A^k
\]
-\end{block}
+\end{block}}
\vspace{-5pt}
+\uncover<9->{%
\begin{block}{Kontrolle: Tangentialvektor berechnen}
\vspace{-10pt}
\begin{align*}
\frac{d}{dt}e^{At}
-&=
+&\uncover<10->{=
\sum_{k=1}^\infty A^k \frac{d}{dt} t^{k}{k!}
+}
\\
-&=
+&\uncover<11->{=
\sum_{k=1}^\infty A^{k-1}\frac{t^{k-1}}{(k-1)!} A
+}
\\
-&=
+&\uncover<12->{=
\sum_{k=0} A^k\frac{t^k}{k!}
A
-=
+}
+\uncover<13->{=
e^{At} A
+}
\end{align*}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/7/drehung.tex b/vorlesungen/slides/7/drehung.tex
index ae0dbe3..7744e99 100644
--- a/vorlesungen/slides/7/drehung.tex
+++ b/vorlesungen/slides/7/drehung.tex
@@ -13,12 +13,20 @@
\begin{columns}[t,onlytextwidth]
\begin{column}{0.38\textwidth}
\begin{block}{Drehung}
+{\color{blue}Längen}, {\color<2->{blue}Winkel},
+{\color<2->{darkgreen}Orientierung}
+erhalten
+\uncover<2->{
\[
\operatorname{SO}(2)
=
-\operatorname{SL}_2(\mathbb{R}) \cap \operatorname{O}(2)
-\]
+{\color{blue}\operatorname{O}(2)}
+\cap
+{\color{darkgreen}\operatorname{SL}_2(\mathbb{R})}
+\]}
+\vspace{-20pt}
\end{block}
+\uncover<3->{%
\begin{block}{Zusammensetzung}
Eine Drehung muss als Zusammensetzung geschrieben werden können:
\[
@@ -31,7 +39,9 @@ D_{\alpha}
=
DST
\]
-\end{block}
+\end{block}}
+\vspace{-10pt}
+\uncover<12->{%
\begin{block}{Beispiel}
\vspace{-12pt}
\[
@@ -43,9 +53,10 @@ D_{60^\circ}
\begin{pmatrix}1&0\\\frac{\sqrt{3}}2&1\end{pmatrix}
}
\]
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.58\textwidth}
+\uncover<4->{%
\begin{block}{Ansatz}
\vspace{-12pt}
\begin{align*}
@@ -64,7 +75,7 @@ c^{-1}&0\\
t&1
\end{pmatrix}
\\
-&=
+&\uncover<5->{=
\begin{pmatrix}
c^{-1}&0\\
0 &c
@@ -73,40 +84,48 @@ c^{-1}&0\\
-st&-s\\
t& 1
\end{pmatrix}
+}
\\
-&=
+&\uncover<6->{=
\begin{pmatrix}
--stc^{-1}&{\color{darkgreen}sc^{-1}}\\
-{\color{blue}ct}&{\color{red}c}
-\end{pmatrix}
-=
+{\color<11->{orange}-stc^{-1}}&{\color<10->{darkgreen}sc^{-1}}\\
+{\color<9->{blue}ct}&{\color<8->{red}c}
+\end{pmatrix}}
+\uncover<7->{=
\begin{pmatrix}
-\cos\alpha & {\color{darkgreen}- \sin\alpha} \\
-{\color{blue}\sin\alpha} & \phantom{-} {\color{red}\cos\alpha}
-\end{pmatrix}
+{\color<11->{orange}\cos\alpha} & {\color<10->{darkgreen}- \sin\alpha} \\
+{\color<9->{blue}\sin\alpha} & \phantom{-} {\color<8->{red}\cos\alpha}
+\end{pmatrix}}
\end{align*}
-\end{block}
+\end{block}}
\vspace{-10pt}
+\uncover<7->{%
\begin{block}{Koeffizientenvergleich}
\vspace{-15pt}
\begin{align*}
+\uncover<8->{
{\color{red} c}
&=
-{\color{red}\cos\alpha }
+{\color{red}\cos\alpha }}
&&
&
+\uncover<9->{
{\color{blue}
-t}&=\rlap{$\displaystyle\frac{\sin\alpha}{c} = \tan\alpha$} \\
+t}&=\rlap{$\displaystyle\frac{\sin\alpha}{c} = \tan\alpha$}}\\
+\uncover<10->{
{\color{darkgreen}sc^{-1}}&={\color{darkgreen}-\sin\alpha}
&
&\Rightarrow&
{\color{darkgreen}s}&={\color{darkgreen}-\sin\alpha}\cos\alpha
+}
\\
+\uncover<11->{
{\color{orange} -stc^{-t}}
&=
\rlap{$\sin\alpha\tan\alpha = \cos\alpha \quad $}
+}
\end{align*}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/7/einparameter.tex b/vorlesungen/slides/7/einparameter.tex
index 52924bf..5171085 100644
--- a/vorlesungen/slides/7/einparameter.tex
+++ b/vorlesungen/slides/7/einparameter.tex
@@ -7,17 +7,20 @@
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
-\frametitle{Einparameter Untergruppen}
+\frametitle{Einparameter-Untergruppen}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{block}{Definition}
Eine Kurve $\gamma\colon \mathbb{R}\to G\subset\operatorname{GL}_n(\mathbb{R})$,
-die gleichzeitig eine Untergruppe von $G$ ist mit
+die {\color<2->{red}gleichzeitig eine Untergruppe von $G$} ist \uncover<3->{mit}
\[
+\uncover<3->{
\gamma(t+s) = \gamma(t)\gamma(s)\quad\forall t,s\in\mathbb{R}
+}
\]
\end{block}
+\uncover<4->{%
\begin{block}{Drehungen}
Drehmatrizen bilden Einparameter- Untergruppen
\begin{align*}
@@ -33,9 +36,10 @@ D_{x,t}D_{x,s}
&=
D_{x,t+s}
\end{align*}
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<5->{%
\begin{block}{Scherungen in $\operatorname{SL}_2(\mathbb{R})$}
\vspace{-12pt}
\[
@@ -53,8 +57,9 @@ D_{x,t+s}
0&1
\end{pmatrix}
\]
-\end{block}
+\end{block}}
\vspace{-12pt}
+\uncover<6->{%
\begin{block}{Skalierungen in $\operatorname{SL}_2(\mathbb{R})$}
\vspace{-12pt}
\[
@@ -69,8 +74,9 @@ e^t&0\\0&e^{-t}
e^{t+s}&0\\0&e^{-(t+s)}
\end{pmatrix}
\]
-\end{block}
+\end{block}}
\vspace{-12pt}
+\uncover<7->{%
\begin{block}{Gemischt}
\vspace{-12pt}
\begin{gather*}
@@ -80,7 +86,7 @@ A_t = I \cosh t + \begin{pmatrix}1&a\\0&-1\end{pmatrix}\sinh t
\begin{pmatrix}1&s\\0&-1\end{pmatrix}^2
=I
\end{gather*}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/7/kommutator.tex b/vorlesungen/slides/7/kommutator.tex
index f9004df..84bf034 100644
--- a/vorlesungen/slides/7/kommutator.tex
+++ b/vorlesungen/slides/7/kommutator.tex
@@ -4,6 +4,7 @@
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
@@ -11,128 +12,154 @@
\vspace{-20pt}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
+\def\t{14.0cm}
\ifthenelse{\boolean{presentation}}{
\only<1>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c01.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c01.jpg}};}
\only<2>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c02.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c02.jpg}};}
\only<3>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c03.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c03.jpg}};}
\only<4>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c04.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c04.jpg}};}
\only<5>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c05.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c05.jpg}};}
\only<6>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c06.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c06.jpg}};}
\only<7>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c07.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c07.jpg}};}
\only<8>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c08.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c08.jpg}};}
\only<9>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c09.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c09.jpg}};}
\only<10>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c10.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c10.jpg}};}
\only<11>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c11.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c11.jpg}};}
\only<12>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c12.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c12.jpg}};}
\only<13>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c13.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c13.jpg}};}
\only<14>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c14.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c14.jpg}};}
\only<15>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c15.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c15.jpg}};}
\only<16>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c16.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c16.jpg}};}
\only<17>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c17.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c17.jpg}};}
\only<18>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c18.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c18.jpg}};}
\only<19>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c19.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c19.jpg}};}
\only<20>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c20.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c20.jpg}};}
\only<21>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c21.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c21.jpg}};}
\only<22>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c22.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c22.jpg}};}
\only<23>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c23.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c23.jpg}};}
\only<24>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c24.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c24.jpg}};}
\only<25>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c25.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c25.jpg}};}
\only<26>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c26.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c26.jpg}};}
\only<27>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c27.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c27.jpg}};}
\only<28>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c28.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c28.jpg}};}
\only<29>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c29.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c29.jpg}};}
\only<30>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c30.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c30.jpg}};}
\only<31>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c31.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c31.jpg}};}
\only<32>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c32.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c32.jpg}};}
\only<33>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c33.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c33.jpg}};}
\only<34>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c34.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c34.jpg}};}
\only<35>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c35.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c35.jpg}};}
\only<36>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c36.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c36.jpg}};}
\only<37>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c37.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c37.jpg}};}
\only<38>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c38.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c38.jpg}};}
\only<39>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c39.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c39.jpg}};}
\only<40>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c40.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c40.jpg}};}
\only<41>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c41.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c41.jpg}};}
\only<42>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c42.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c42.jpg}};}
\only<43>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c43.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c43.jpg}};}
\only<44>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c44.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c44.jpg}};}
\only<45>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c45.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c45.jpg}};}
\only<46>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c46.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c46.jpg}};}
\only<47>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c47.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c47.jpg}};}
\only<48>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c48.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c48.jpg}};}
\only<49>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c49.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c49.jpg}};}
\only<50>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c50.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c50.jpg}};}
\only<51>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c51.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c51.jpg}};}
\only<52>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c52.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c52.jpg}};}
\only<53>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c53.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c53.jpg}};}
\only<54>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c54.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c54.jpg}};}
\only<55>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c55.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c55.jpg}};}
\only<56>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c56.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c56.jpg}};}
\only<57>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c57.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c57.jpg}};}
\only<58>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c58.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c58.jpg}};}
\only<59>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c59.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c59.jpg}};}
}{}
\only<60>{\node at (0,0) {
-\includegraphics[width=\textwidth]{../slides/7/images/c/c60.jpg}};}
+\includegraphics[width=\t]{../slides/7/images/c/c60.jpg}};}
+\coordinate (A) at (-0.3,3);
+\coordinate (B) at (-1.1,2);
+\coordinate (C) at (-2.1,-1.2);
+\draw[->,color=red,line width=1.4pt]
+ (A)
+ to[out=-143,in=60]
+ (B)
+ to[out=-120,in=80]
+ (C);
+%\fill[color=red] (B) circle[radius=0.08];
+\node[color=red] at (-1.2,1.5) [above left] {$D_{x,\alpha}$};
+\coordinate (D) at (0.3,3.2);
+\coordinate (E) at (1.8,2.8);
+\coordinate (F) at (5.2,-0.3);
+\draw[->,color=blue,line width=1.4pt]
+ (D)
+ to[out=-10,in=157]
+ (E)
+ to[out=-23,in=120]
+ (F);
+\fill[color=blue] (E) circle[radius=0.08];
+\node[color=blue] at (2.4,2.4) [above right] {$D_{y,\beta}$};
+\draw[->,color=darkgreen,line width=1.4pt]
+ (0.7,-3.1) to[out=1,in=-160] (3.9,-2.6);
+\node[color=darkgreen] at (2.5,-3.4) {$D_{z,\gamma}$};
\end{tikzpicture}
\end{center}
\end{frame}
diff --git a/vorlesungen/slides/7/kurven.tex b/vorlesungen/slides/7/kurven.tex
index 196fa2a..e0690eb 100644
--- a/vorlesungen/slides/7/kurven.tex
+++ b/vorlesungen/slides/7/kurven.tex
@@ -20,6 +20,7 @@ Kurve in $\mathbb{R}^n$:
I=[a,b] \to \mathbb{R}^n
:
t\mapsto \gamma(t)
+\uncover<2->{
=
\begin{pmatrix}
x_1(t)\\
@@ -27,6 +28,7 @@ x_2(t)\\
\vdots\\
x_n(t)
\end{pmatrix}
+}
\]
\vspace{-15pt}
\begin{center}
@@ -42,16 +44,21 @@ x_n(t)
\fill[color=red] (C) circle[radius=0.06];
\node[color=red] at (C) [left] {$\gamma(t)$};
-\draw[->,color=blue,line width=1.4pt,shorten <= 0.06cm] (C) -- (E);
-\node[color=blue] at (E) [right] {$\dot{\gamma}(t)$};
+\uncover<4->{
+ \draw[->,color=blue,line width=1.4pt,shorten <= 0.06cm] (C) -- (E);
+ \node[color=blue] at (E) [right] {$\dot{\gamma}(t)$};
+}
-\draw[->] (-0.1,0) -- (5.9,0) coordinate[label={$x_1$}];
-\draw[->] (0,-0.1) -- (0,4.3) coordinate[label={right:$x_2$}];
+\uncover<2->{
+ \draw[->] (-0.1,0) -- (5.9,0) coordinate[label={$x_1$}];
+ \draw[->] (0,-0.1) -- (0,4.3) coordinate[label={right:$x_2$}];
+}
\end{tikzpicture}
\end{center}
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<4->{%
\begin{block}{Tangenten}
Ableitung
\[
@@ -66,6 +73,7 @@ Ableitung
\dot{x}_n(t)
\end{pmatrix}
\]
+\uncover<5->{%
Lineare Approximation:
\[
\gamma(t+h)
@@ -75,10 +83,21 @@ Lineare Approximation:
\dot{\gamma}(t) \cdot h
+
o(h)
-\]
+\]}%
+\vspace{-10pt}
+\begin{itemize}
+\item<6->
Sinnvoll, weil sowohl $\gamma(t)$ und $\dot{\gamma}(t)$
in $\mathbb{R}^n$ liegen
-\end{block}
+\item<7->
+Gilt auch für
+\[
+\operatorname{GL}_n(\mathbb{R})
+\uncover<8->{\subset M_n(\mathbb{R})}
+\uncover<9->{ = \mathbb{R}^{n\times n}}
+\]
+\end{itemize}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/7/liealgebra.tex b/vorlesungen/slides/7/liealgebra.tex
index 892216e..574467b 100644
--- a/vorlesungen/slides/7/liealgebra.tex
+++ b/vorlesungen/slides/7/liealgebra.tex
@@ -8,50 +8,64 @@
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
\frametitle{Lie-Algebra}
+\ifthenelse{\boolean{presentation}}{\vspace{-15pt}}{\vspace{-8pt}}
\begin{block}{Vektorraum}
Tangentialvektoren im Punkt $I$:
\begin{center}
\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}}
\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\
\hline
+\uncover<2->{
\operatorname{GL}_n(\mathbb{R})
& beliebige Matrizen
& M_n(\mathbb{R})
+}
\\
+\uncover<3->{
\operatorname{O(n)}
& antisymmetrische Matrizen
& \operatorname{o}(n)
+}
\\
+\uncover<4->{
\operatorname{SL}_n(\mathbb{R})
& spurlose Matrizen
& \operatorname{sl}_2(\mathbb{R})
+}
\\
+\uncover<5->{
\operatorname{U(n)}
& antihermitesche Matrizen
& \operatorname{u}(n)
+}
\\
+\uncover<6->{
\operatorname{SU(n)}
& spurlose, antihermitesche Matrizen
& \operatorname{su}(n)
+}
\end{tabular}
\end{center}
\end{block}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.40\textwidth}
+\uncover<7->{%
\begin{block}{Lie-Klammer}
Kommutator: $[A,B] = AB-BA$
-\end{block}
+\end{block}}
+\uncover<8->{%
\begin{block}{Nachprüfen}
$[A,B]\in LG$
für $A,B\in LG$
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.56\textwidth}
+\uncover<9->{%
\begin{block}{Algebraische Eigenschaften}
\begin{itemize}
-\item antisymmetrisch: $[A,B]=-[B,A]$
-\item Jacobi-Identität
+\item<10-> antisymmetrisch: $[A,B]=-[B,A]$
+\item<11-> Jacobi-Identität
\[
[A,[B,C]]+
[B,[C,A]]+
@@ -59,9 +73,12 @@ für $A,B\in LG$
= 0
\]
\end{itemize}
+\vspace{-13pt}
+\uncover<12->{%
{\usebeamercolor[fg]{title}
Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$
-\end{block}
+}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/7/mannigfaltigkeit.tex b/vorlesungen/slides/7/mannigfaltigkeit.tex
index 7809ea5..077dc9d 100644
--- a/vorlesungen/slides/7/mannigfaltigkeit.tex
+++ b/vorlesungen/slides/7/mannigfaltigkeit.tex
@@ -18,8 +18,8 @@
\begin{column}{0.48\textwidth}
\begin{block}{Definition}
\begin{itemize}
-\item Karte: Abbildung $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
-\item differenzierbare Kartenwechsel: Koordinatenumrechnung im Überschneidungsgebiet
+\item<2-> Karte: Abbildung $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
+\item<3-> differenzierbare Kartenwechsel: Koordinatenumrechnung im Überschneidungsgebiet
\[
\varphi_\beta\circ\varphi_\alpha^{-1}
\colon
@@ -27,17 +27,19 @@
\to
\varphi_\beta(U_\alpha\cap U_\beta)
\]
-\item Atlas: Menge von Karten, die die ganze Mannigfaltigkeit überdecken
+\item<4-> Atlas: Menge von Karten, die die ganze Mannigfaltigkeit überdecken
\end{itemize}
\end{block}
\vspace{-7pt}
+\uncover<5->{%
\begin{block}{Lokal$\mathstrut\cong\mathbb{R}^n$}
Differenzierbare Mannigfaltigkeiten sehen lokal wie $\mathbb{R}^n$ aus
-\end{block}
+\end{block}}
\vspace{-3pt}
+\uncover<6->{%
\begin{block}{Lie-Gruppe}
Gruppe und Mannigfaltigkeit
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/7/parameter.tex b/vorlesungen/slides/7/parameter.tex
index b719207..1e8549c 100644
--- a/vorlesungen/slides/7/parameter.tex
+++ b/vorlesungen/slides/7/parameter.tex
@@ -5,6 +5,7 @@
%
\bgroup
\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkyellow}{rgb}{1,0.8,0}
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
@@ -13,53 +14,85 @@
\begin{columns}[t,onlytextwidth]
\begin{column}{0.4\textwidth}
\begin{block}{Drehung um Achsen}
+\vspace{-12pt}
\begin{align*}
+\uncover<2->{
D_{x,\alpha}
&=
\begin{pmatrix}
1&0&0\\0&\cos\alpha&-\sin\alpha\\0&\sin\alpha&\cos\alpha
\end{pmatrix}
+}
\\
+\uncover<3->{
D_{y,\beta}
&=
\begin{pmatrix}
\cos\beta&0&-\sin\beta\\0&1&0\\\sin\beta&0&\cos\beta
\end{pmatrix}
+}
\\
+\uncover<4->{
D_{z,\gamma}
&=
\begin{pmatrix}
\cos\gamma&-\sin\gamma&0\\\sin\gamma&\cos\gamma&0\\0&0&1
\end{pmatrix}
+}
+\intertext{\uncover<5->{beliebige Drehung:}}
+\uncover<5->{
+D
+&=
+D_{x,\alpha}
+D_{y,\beta}
+D_{z,\gamma}
+}
\end{align*}
\end{block}
\end{column}
\begin{column}{0.56\textwidth}
-\begin{block}{Drehung um $\vec{\omega}$}
+\uncover<6->{%
+\begin{block}{Drehung um $\vec{\omega}\in\mathbb{R}^3$: 3-dimensional}
+\uncover<7->{%
$\omega=|\vec{\omega}|=\mathstrut$Drehwinkel
+}
\\
+\uncover<8->{%
$\vec{k}=\vec{\omega}^0=\mathstrut$Drehachse
+}
\[
-\vec{x}
+{\color{red}\vec{x}}
\mapsto
-(\vec{x} -(\vec{k}\cdot\vec{x})\vec{k})
+\uncover<10->{
+({\color{darkyellow}\vec{x} -(\vec{k}\cdot\vec{x})\vec{k}})
\cos\omega
+
-(\vec{k}\times\vec{x})\sin\omega
+}
+\uncover<11->{
+({\color{darkgreen}\vec{x}\times\vec{k}}) \sin\omega
+
-\vec{k}(\vec{k}\cdot\vec{x})
+}
+\uncover<9->{
+{\color{blue}\vec{k}} (\vec{k}\cdot\vec{x})
+}
\]
\vspace{-40pt}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
-\node at (0,0) {\includegraphics[width=\textwidth]{../slides/7/images/rodriguez.jpg}};
+\node at (0,0)
+ {\includegraphics[width=\textwidth]{../slides/7/images/rodriguez.jpg}};
\node[color=red] at (1.6,-0.9) {$\vec{x}$};
\node[color=blue] at (0.5,2) {$\vec{k}$};
-\node[color=darkgreen] at (-3,1.1) {$\vec{k}\times\vec{x}$};
-\node[color=yellow] at (2.2,-0.2) {$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$};
+\uncover<11->{
+ \node[color=darkgreen] at (-3,1.1) {$\vec{x}\times\vec{k}$};
+}
+\uncover<10->{
+ \node[color=yellow] at (2.2,-0.2)
+ {$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$};
+}
\end{tikzpicture}
\end{center}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\vspace{-15pt}
diff --git a/vorlesungen/slides/7/semi.tex b/vorlesungen/slides/7/semi.tex
index 46f6d03..66b8d27 100644
--- a/vorlesungen/slides/7/semi.tex
+++ b/vorlesungen/slides/7/semi.tex
@@ -21,6 +21,7 @@ x\mapsto \underbrace{e^s\cdot x}_{\text{Skalierung}} \mathstrut+ t
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<2->{%
\begin{block}{Drehung und Verschiebung}
Gruppe
$G=
@@ -32,51 +33,57 @@ Wirkung auf $\mathbb{R}^2$:
\[
\vec{x}\mapsto \underbrace{D_\alpha \vec{x}}_{\text{Drehung}} \mathstrut+ \vec{t}
\]
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\vspace{-15pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
+\uncover<3->{%
\begin{block}{Verknüpfung}
\vspace{-15pt}
\begin{align*}
(e^{s_1},t_1)(e^{s_2},t_2)x
-&=
-(e^{s_1},t_1)(e^{s_2}x+t_2)
+&\uncover<4->{=
+(e^{s_1},t_1)(e^{s_2}x+t_2)}
\\
-&=
-e^{s_1+s_2}x + e^{s_1}t_2+t_1
+&\uncover<5->{=
+e^{s_1+s_2}x + e^{s_1}t_2+t_1}
\\
+\uncover<6->{
(e^{s_1},t_1)(e^{s_2},t_2)
&=
-(e^{s_1}e^{s_2},t_1+e^{s_1}t_2)
+(e^{s_1}e^{s_2},t_1+e^{s_1}t_2)}
\end{align*}
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<7->{%
\begin{block}{Verknüpfung}
\vspace{-15pt}
\begin{align*}
(\alpha_1,\vec{t}_1)
(\alpha_2,\vec{t}_2)
\vec{x}
-&=
-(\alpha_1,\vec{t}_1)(D_{\alpha_2}\vec{x}+\vec{t}_2)
+&\uncover<8->{=
+(\alpha_1,\vec{t}_1)(D_{\alpha_2}\vec{x}+\vec{t}_2)}
\\
-&=D_{\alpha_1+\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1
+&\uncover<9->{=D_{\alpha_1+\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1}
\\
+\uncover<10->{
(\alpha_1,\vec{t}_1)
(\alpha_2,\vec{t}_2)
&=
(\alpha_1+\alpha_2, D_{\alpha_1}\vec{t}_2+\vec{t}_1)
+}
\end{align*}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\vspace{-10pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
+\uncover<11->{%
\begin{block}{Matrixschreibweise}
\vspace{-12pt}
\[
@@ -88,9 +95,10 @@ e^s&t\\
\quad\text{auf}\quad
\begin{pmatrix}x\\1\end{pmatrix}
\]
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<12->{%
\begin{block}{Matrixschreibweise}
\vspace{-12pt}
\[
@@ -102,7 +110,7 @@ D_{\alpha}&\vec{t}\\
\quad\text{auf}\quad
\begin{pmatrix}\vec{x}\\1\end{pmatrix}
\]
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index 45b16d1..0cab79f 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -8,7 +8,7 @@
% Was sind Symmetrien
%\folie{7/symmetrien.tex}
% Algebraische Bedingungen für Matrixgruppen
-\folie{7/algebraisch.tex}
+%\folie{7/algebraisch.tex}
% Parametrisierung, Beispiel SO(3)
%\folie{7/parameter.tex}
% Mannigfaltigkeiten
@@ -34,5 +34,5 @@
\section{Exponentialabbildung}
% Differentialgleichung für die Exponentialabbildung
-%\folie{7/dg.tex}
+\folie{7/dg.tex}