aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@othello.ch>2021-04-05 22:08:36 +0200
committerAndreas Müller <andreas.mueller@othello.ch>2021-04-05 22:08:36 +0200
commitc321e5bc7ce152b7509d6f55c0514590f770b22c (patch)
treeafcc17e7f56846f37138bc14d67d34e91d21cc66
parentremove section on numerical eigenvalue methods (diff)
downloadSeminarMatrizen-c321e5bc7ce152b7509d6f55c0514590f770b22c.tar.gz
SeminarMatrizen-c321e5bc7ce152b7509d6f55c0514590f770b22c.zip
new drawings
-rw-r--r--buch/chapters/60-gruppen/uebungsaufgaben/6002.tex2
-rw-r--r--buch/chapters/70-graphen/images/Makefile5
-rw-r--r--buch/chapters/70-graphen/images/fundamental.pdfbin0 -> 25976 bytes
-rw-r--r--buch/chapters/70-graphen/images/fundamental.tex54
-rw-r--r--buch/chapters/70-graphen/spektral.tex190
-rw-r--r--buch/chapters/70-graphen/wavelets.tex202
-rw-r--r--buch/chapters/90-crypto/arith.tex282
-rw-r--r--buch/chapters/90-crypto/chapter.tex2
-rw-r--r--buch/chapters/90-crypto/ff.tex2
-rw-r--r--buch/chapters/90-crypto/images/Makefile8
-rw-r--r--buch/chapters/90-crypto/images/multiplikation.pdfbin0 -> 25263 bytes
-rw-r--r--buch/chapters/90-crypto/images/multiplikation.tex464
-rw-r--r--buch/chapters/90-crypto/images/schieberegister.pdfbin0 -> 28254 bytes
-rw-r--r--buch/chapters/90-crypto/images/schieberegister.tex120
-rw-r--r--buch/chapters/90-crypto/uebungsaufgaben/9001.tex2
15 files changed, 1216 insertions, 117 deletions
diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex
index 43464d7..14fbe2b 100644
--- a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex
+++ b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex
@@ -108,7 +108,7 @@ g_1g_2g_1^{-1}g_2^{-1}
\\
&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1)
=
-(1,(1-\lambda_2)(t_1-t_2))
+(1,(1-\lambda_2)(t_1-t_2)).
\end{align*}
Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist.
\item
diff --git a/buch/chapters/70-graphen/images/Makefile b/buch/chapters/70-graphen/images/Makefile
index b42cbae..bd77756 100644
--- a/buch/chapters/70-graphen/images/Makefile
+++ b/buch/chapters/70-graphen/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf
+all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf fundamental.pdf
peterson.pdf: peterson.tex
pdflatex peterson.tex
@@ -17,3 +17,6 @@ adjazenzd.pdf: adjazenzd.tex
kreis.pdf: kreis.tex
pdflatex kreis.tex
+fundamental.pdf: fundamental.tex
+ pdflatex fundamental.tex
+
diff --git a/buch/chapters/70-graphen/images/fundamental.pdf b/buch/chapters/70-graphen/images/fundamental.pdf
new file mode 100644
index 0000000..66b82ca
--- /dev/null
+++ b/buch/chapters/70-graphen/images/fundamental.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/fundamental.tex b/buch/chapters/70-graphen/images/fundamental.tex
new file mode 100644
index 0000000..b7fe9c4
--- /dev/null
+++ b/buch/chapters/70-graphen/images/fundamental.tex
@@ -0,0 +1,54 @@
+%
+% fundamental.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\begin{scope}[xshift=-4.6cm]
+ \draw[color=red,line width=2pt] (1.8,0) -- (1.8,2);
+ \draw[color=red,line width=2pt] (0,0) -- (4,0);
+ \node at (1.8,0) [below] {$i$};
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \node at (2,-2.3) [below] {Standarbasis};
+\end{scope}
+
+\begin{scope}
+ \draw[color=red,line width=1.4pt]
+ plot[domain=0:360,samples=100] ({\x/90},{2*sin(\x)});
+ \draw[color=blue,line width=1.4pt]
+ plot[domain=0:360,samples=100] ({\x/90},{2*cos(\x)});
+ \node[color=blue] at (1,-1) {$\Re f_i$};
+ \node[color=red] at (2,1) {$\Im f_i$};
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+ \node at (2,-2.3) [below] {Eigenbasis};
+\end{scope}
+
+\begin{scope}[xshift=4.6cm]
+ \foreach \t in {0.02,0.05,0.1,0.2,0.5}{
+ \draw[color=red,line width=1.0pt]
+ plot[domain=-1.8:2.2,samples=100]
+ ({\x+1.8},{exp(-\x*\x/(4*\t))/(sqrt(4*3.1415*\t))});
+ }
+ \fill[color=red] (1.8,0) circle[radius=0.08];
+ \node at (1.8,0) [below] {$\xi$};
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+ \node at (2,-2.3) [below] {Fundamentallösung};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/spektral.tex b/buch/chapters/70-graphen/spektral.tex
index 9349f41..f68c814 100644
--- a/buch/chapters/70-graphen/spektral.tex
+++ b/buch/chapters/70-graphen/spektral.tex
@@ -6,3 +6,193 @@
\section{Spektrale Graphentheorie
\label{buch:section:spektrale-graphentheorie}}
\rhead{Spektrale Graphentheorie}
+Die Laplace-Matrix codiert alle wesentliche Information eines
+ungerichteten Graphen.
+Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine
+Komponente haben.
+Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen
+Eigenschaften der Laplace-Matrix zu studieren.
+
+\subsection{Grapheigenschaften und Spektrum von $L$
+\label{buch:subsection:grapheigenschaften-und-spektrum-von-l}}
+TODO XXX
+
+\subsection{Wärmeleitung auf einem Graphen
+\label{buch:subsection:waermeleitung-auf-einem-graphen}}
+Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet
+werden als Funktionen, die jedem Knoten einen Wert zuordnen.
+Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung
+auf dem Graphen.
+Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten
+zu einem anderen zu fliessen.
+Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto
+grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur
+der beteiligten Knoten.
+Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional
+\[
+\frac{dT_i}{dt}
+=
+\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i)
+=
+-
+\kappa
+\biggl(
+d_iT_i
+-
+\sum_{\text{$j$ Nachbar von $i$}} T_j
+\biggr)
+\]
+Der Term auf der rechten Seite ist genau die Wirkung der
+Laplace-Matrix auf dem Vektor $T$ der Temperaturen:
+\begin{equation}
+\frac{dT}{dt}
+=
+-\kappa L T.
+\label{buch:graphen:eqn:waermeleitung}
+\end{equation}
+Der Wärmefluss, der durch die
+Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben
+wird, codiert ebenfalls wesentliche Informationen über den Graphen.
+Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt,
+desto schneller findet der Wärmeaustausch zwischen diesen Teilen
+statt.
+Die Lösungen der Wärmeleitungsgleichung liefern also Informationen
+über den Graphen.
+
+\subsection{Eigenwerte und Eigenvektoren
+\label{buch:subsection:ein-zyklischer-graph}}
+Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung}
+ist eine lineare Differentialgleichung mit konstanten Koeffizienten,
+die mit der Matrixexponentialfunktion gelöst werden.
+Die Lösung ist
+\[
+f(t) = e^{-\kappa Lt}f(0).
+\]
+
+Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich
+ineffizient, da grosse Matrizenprodukte berechnet werden müssen.
+Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus
+orthonormierten Eigenvektoren und die Eigenwerte sind reell.
+Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die
+zugehörigen Eigenwerte mit $\lambda_i$.
+Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung
+der Wärmeleitungsgleichung, denn die beiden Seiten
+\begin{align*}
+\frac{d}{dt}f_i(t)
+&=
+-\kappa\lambda_ie^{-\kappa\lambda_it}f_i
+=
+-\kappa\lambda_i f_i(t)
+\\
+-\kappa Lf_i(t)
+&=
+-\kappa e^{-\kappa\lambda_it} Lf_i
+=
+-\kappa e^{-\kappa\lambda_it} \lambda_i f_i
+=
+-\kappa \lambda_i f_i(t)
+\end{align*}
+von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein.
+
+Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen
+Anfangstemperaturverteilung $f$ kann durch Linearkombination aus
+den Lösungen $f_i(t)$ zusammengesetzt werden.
+Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren.
+Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach,
+die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren:
+\[
+f=\sum_{i=1}^n \langle f_i,f\rangle f_i.
+\]
+Daraus kann man die allgmeine Lösungsformel
+\begin{equation}
+f(t)
+=
+\sum_{i=1}^n \langle f_i,f\rangle f_i(t)
+=
+\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i
+\label{buch:graphen:eqn:eigloesung}
+\end{equation}
+ableiten.
+
+\subsection{Beispiel: Ein zyklischer Graph}
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/kreis.pdf}
+\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
+Graphen.
+\label{buch:graphen:fig:kreis}}
+\end{figure}
+Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
+von Abbildung~\ref{buch:graphen:fig:kreis}.
+Besonders interessant sind die folgenden Funktionen:
+\[
+\left.
+\begin{aligned}
+s_m(k)
+&=
+\sin\frac{2\pi mk}{n}
+\\
+c_m(k)
+&=
+\cos\frac{2\pi mk}{n}
+\end{aligned}
+\;
+\right\}
+\quad
+\Rightarrow
+\quad
+e_m(k)
+=
+e^{2\pi imk/n}
+=
+c_m(k) + is_m(k).
+\]
+Das Skalarprodukt dieser Funktionen ist
+\[
+\langle e_m, e_{m'}\rangle
+=
+\frac1n
+\sum_{k=1}^n
+\overline{e^{2\pi i km/n}}
+e^{2\pi ikm'/n}
+=
+\frac1n
+\sum_{k=1}^n
+e^{\frac{2\pi i}{n}(m'-m)k}
+=
+\delta_{mm'}
+\]
+Die Funktionen bilden daher eine Orthonormalbasis des Raums der
+Funktionen auf $G$.
+Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
+die Funktionen
+\[
+c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
+\]
+eine orthonormierte Basis.
+
+
+Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
+Abbildung auf Funktionen auf dem Graphen gemacht werden.
+Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
+Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
+Dann definieren wir die Funktion $Lf$ durch
+\[
+(Lf)(v)
+=
+\sum_{v'\in V} l_{vv'}f(v').
+\]
+
+\subsection{Standardbasis und Eigenbasis
+\label{buch:subsection:standardbasis-und-eigenbasis}}
+Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
+kombinieren lassen, ist die Standardbasis.
+Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
+\[
+e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
+1\qquad&v=v'\\
+0\qquad&\text{sonst.}
+\end{cases}
+\]
+
+
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index 0739f14..9c88c08 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -6,126 +6,118 @@
\section{Wavelets auf Graphen
\label{buch:section:wavelets-auf-graphen}}
\rhead{Wavelets auf Graphen}
-Graphen werden oft verwendet um geometrische Objekte zu approximieren.
-Funktionen auf einem Graphen können dann Approximationen von physikalischen
-Grössen wie zum Beispiel der Temperatur auf dem geometrischen Objekt
-interpretiert werden.
-Verschiedene Basen für die Beschreibung solcher Funktionen sind im Laufe
-der Zeit verwendet worden, doch Wavelets auf einem Graphen sind eine
-neuere Idee, mit der man aus der Laplace-Matrix Basen gewinnen kann,
-die die Idee von langsam sich ausbreitenden Störungen besonders gut
-wiederzugeben in der Lage sind.
-
-In diesem Abschnitt werden erst Funktionen auf einem Graphen genauer
-definiert.
-In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis}
-wird die Eigenbasis mit dem Laplace-Operator konstruiert und mit
-der Standarbasis verglichen.
-Schliesslich werden in Abschnitt~\ref{buch:subsection:wavelet-basen}
-verschiedene Wavelet-Basen konstruiert.
-
-\subsection{Funktionen auf einem Graphen und die Laplace-Matrix}
-Sei $G$ ein Graph mit der Knotenmenge $V$.
-Eine Funktion $f$ auf einem Graphen ist eine Funktion $f\colon V\to\mathbb{R}$.
-Funktionen auf $G$ sind also Vektoren, die mit den Knoten $V$ indiziert
-sind.
-
-Es gibt auch ein Skalarprodukt für Funktionen auf dem Graphen.
-Sind $f$ und $g$ zwei Funktionen auf $G$, dann ist das Skalarprodukt
-definiert durch
+In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
+gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
+Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
+beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
+Graphen entsprechen.
+Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
+Knoten fast vollständig.
+
+Wenn man einen Standardbasisvektor in einem Knoten $i$
+als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
+die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
+konzentriert hat.
+Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
+
+\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
+Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
+der partiellen Differentialgleichung
+\[
+\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
+\]
+Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
+Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
+$\partial^2/\partial x^2$ sind.
+Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
+Entfernung von einem Punkt spielt überhaupt keine Rolle.
+Die Funktion
\[
-\langle f,g\rangle
+F(x,t)
=
-\frac{1}{|V|}\sum_{v\in V} \overline{f}(v) g(v)
+\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
\]
-Dies ist das bekannte Skalarprodukt der Vektoren mit Komponenten $f(v)$.
+ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
+der Stelle $0$.
+Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
+Durch Überlagerung von Translaten in eine Funktion
+\begin{equation}
+f(x,t)
+=
+\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
+\label{buch:graphen:eqn:fundamentalueberlagerung}
+\end{equation}
+kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
+Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
+deutlich in einer Umgebung von $\xi$ konzentriert.
+% XXX Ausbreitung der Fundamentallösung illustrieren
\begin{figure}
\centering
-\includegraphics{chapters/70-graphen/images/kreis.pdf}
-\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
-Graphen.
-\label{buch:graphen:fig:kreis}}
+\includegraphics{chapters/70-graphen/images/fundamental.pdf}
+\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
+Lösungenfunktionen durch Linearkombination erzeugt werden können.
+In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
+abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
+besonders leicht berechnet werden.
+Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
+übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
+einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
+\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
+\label{buch:graphen:fig:fundamental}}
\end{figure}
-\begin{beispiel}
-Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
-von Abbildung~\ref{buch:graphen:fig:kreis}.
-Besonders interessant sind die folgenden Funktionen:
-\[
-\left.
-\begin{aligned}
-s_m(k)
-&=
-\sin\frac{2\pi mk}{n}
-\\
-c_m(k)
-&=
-\cos\frac{2\pi mk}{n}
-\end{aligned}
-\;
-\right\}
-\quad
-\Rightarrow
-\quad
-e_m(k)
-=
-e^{2\pi imk/n}
-=
-c_m(k) + is_m(k).
-\]
-Das Skalarprodukt dieser Funktionen ist
-\[
-\langle e_m, e_{m'}\rangle
-=
-\frac1n
-\sum_{k=1}^n
-\overline{e^{2\pi i km/n}}
-e^{2\pi ikm'/n}
+
+\subsection{Fundamentallösungen auf einem Graphen}
+Die Wärmeleitungsgleichung auf einem Graphen kann für einen
+Standardbasisvektor mit Hilfe der
+Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
+gefunden werden.
+Aus physikalischen Gründen ist aber offensichtlich, dass die
+Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
+in der Nähe des Knoten $i$ konzentriert ist.
+Dies ist aber aus der expliziten Formel
+\begin{equation}
+F_i(t)
=
-\frac1n
-\sum_{k=1}^n
-e^{\frac{2\pi i}{n}(m'-m)k}
+\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
=
-\delta_{mm'}
-\]
-Die Funktionen bilden daher eine Orthonormalbasis des Raums der
-Funktionen auf $G$.
-Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
-die Funktionen
-\[
-c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
-\]
-eine orthonormierte Basis.
-\end{beispiel}
+\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
+\label{buch:graphen:eqn:fundamentalgraph}
+\end{equation}
+nicht unmittelbar erkennbar.
+Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
+dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
+werden.
+Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
+beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
+über grössere Distanzen.
+Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
+den Extremen der Standardbasis und der Eigenbasis.
+Die ``Interpolation'' geht von der Differentialgleichung aus,
+sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
+auf die gleiche Art bearbeitet.
-Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
-Abbildung auf Funktionen auf dem Graphen gemacht werden.
-Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
-Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
-Dann definieren wir die Funktion $Lf$ durch
-\[
-(Lf)(v)
-=
-\sum_{v'\in V} l_{vv'}f(v').
-\]
+Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
+aus der sich alle Vektoren linear kombinieren lassen, in der aber
+auch auf die für die Anwendung interessante Längenskala angepasste
+Funktionen gefunden werden können.
-\subsection{Standardbasis und Eigenbasis
-\label{buch:subsection:standardbasis-und-eigenbasis}}
-Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
-kombinieren lassen, ist die Standardbasis.
-Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
-\[
-e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
-1\qquad&v=v'\\
-0\qquad&\text{sonst.}
-\end{cases}
-\]
+\subsection{Wavelets und Frequenzspektrum}
+Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt
-\subsection{Wavelet-Basen
-\label{buch:subsection:wavelet-basen}}
+\subsection{Frequenzspektrum
+\label{buch:subsection:frequenzspektrum}}
+Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches
+wie $e^{-k^2}$ gegen $0$ geht.
+Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen
+schneller dämpft als die tiefen Frequenzen.
+
+
+\subsection{Wavelet-Basen
+\label{buch:subsection:}}
diff --git a/buch/chapters/90-crypto/arith.tex b/buch/chapters/90-crypto/arith.tex
index b6f2fd8..44eb6bb 100644
--- a/buch/chapters/90-crypto/arith.tex
+++ b/buch/chapters/90-crypto/arith.tex
@@ -6,20 +6,290 @@
\section{Arithmetik für die Kryptographie
\label{buch:section:arithmetik-fuer-kryptographie}}
\rhead{Arithmetik für die Kryptographie}
+Die Algorithmen der mathematischen Kryptographie basieren
+auf den Rechenoperationen in grossen, aber endlichen Körpern.
+Für die Division liefert der euklidische Algorithmus eine
+Methode, der in so vielen Schritten die Inverse findet,
+wie Dividend und Divisor Binärstellen haben.
+Dies ist weitgehend optimal.
+
+Die Division ist umkehrbar, in der Kryptographie strebt man aber an,
+Funktionen zu konstruieren, die nur mit grossem Aufwand umkehrbar sind.
+Eine solche Funktion ist das Potenzieren in einem endlichen Körper.
+Die Berechnung von Potenzen durch wiederholte Multiplikation ist jedoch
+prohibitiv aufwendig, daher ist ein schneller Potenzierungsalgorithmus
+nötig, der in Abschnitt~\ref{buch:subsection:potenzieren} beschrieben
+wird.
+Bei der Verschlüsselung grosser Datenmengen wie zum Beispiel bei
+der Verschlüsselung ganzer Harddisks mit Hilfe des AES-Algorithmus
+kommt es auf die Geschwindigkeit auch der elementarsten Operationen
+in den endlichen Körpern an.
+Solche Methoden werden in den Abschnitten
+\ref{buch:subsection:rechenoperationen-in-fp}
+und
+\ref{buch:subsection:rechenoperatione-in-f2l}
+besprochen.
\subsection{Potenzieren
\label{buch:subsection:potenzieren}}
-% XXX Divide-and-Conquer Algorithmus
+Wir gehen davon aus, dass wir einen schnellen Algorithmus zur
+Berechnung des Produktes zweier Elemente $a,b$ in einer
+beliebigen Gruppe $G$ haben.
+Die Gruppe $G$ kann die Multiplikation der ganzen oder reellen Zahlen
+sein, dies wird zum Beispiel in Implementation der Potenzfunktion
+verwendet.
+Für kryptographische Anwendungen ist $G$ die multiplikative Gruppe
+eines endlichen Körpers oder eine elliptische Kurve.
+
+Zur Berechnung von $a^k$ sind bei einer naiven Durchführung des
+Algorithmus $k-1$ Multiplikationen nötig, immer sofort gefolgt
+von einer Reduktion $\mod p$ um sicherzustellen, dass die Resultate
+nicht zu gross werden.
+Ist $l$ die Anzahl der Binärstellen von $k$, dann benötigt dieser
+naive Algorithmus $O(2^l)$ Multiplikationen, die Laufzeit wächst
+also exponentiell mit der Bitlänge von $k$ an.
+Der nachfolgend beschriebene Algorithmus reduziert die Laufzeit auf
+die $O(l)$.
+
+Zunächst schreiben wir den Exponenten $k$ in binärer Form als
+\[
+k = k_l2^l + k_{l-1}2^{l-1} + \dots k_22^2+k_12^1 k_02^0.
+\]
+Die Potenz $a^k$ kann dann geschrieben werden als
+\[
+a^k
+=
+a^{k_l2^l} \cdot a^{k_{l-1}2^{l-1}} \cdot \dots \cdot
+a^{k_22^2} \cdot a^{k_12^1} \cdot a^{k_02^0}
+\]
+Nur diejenigen Faktoren tragen etwas bei, für die $k_i\ne 0$ ist.
+Die Potenz kann man daher auch schreiben als
+\[
+a^k
+=
+\prod_{k_i\ne 0} a^{2^i}.
+\]
+Es sind also nur so viele Faktoren zu berücksichtigen, wie $k$
+Binärstellen $1$ hat.
+
+Die einzelnen Faktoren $a^{2^i}$ können durch wiederholtes Quadrieren
+erhalten werden:
+\[
+a^{2^i} = a^{2\cdot 2^{i-1}} = (a^{2^{i-1}})^2,
+\]
+also durch maximal $l-1$ Multiplikationen.
+Wenn $k$ keine Ganzzahl ist sondern binäre Nachkommastellen hat, also
+\[
+k=k_l2^l + \dots + k_12^1 + k_02^0 + k_{-1}2^{-1} + k_{-2}2^{-2}+\dots,
+\]
+dann können die Potenzen $a^{2^{-i}}$ durch wiederholtes Wurzelziehen
+\[
+a^{2^{-i}} = a^{\frac12\cdot 2^{-i+1}} = \sqrt{a^{2^{-i+1}}}
+\]
+gefunden werden.
+Die Berechnung der Quadratwurzel lässt sich in Hardware effizient
+implementieren.
+
+\begin{algorithmus}
+Der folgende Algorithmsu berechnet $a^k$ in $O(\log_2(k))$
+Multiplikationen
+\begin{enumerate}
+\item Initialisiere $p=1$ und $q=a$
+\item Falls $k$ ungerade ist, setze $p:=p\cdot q$
+\item Setze $q:=q^2$ und $k := k/2$, wobei die ganzzahlige Division durch $2$
+am effizientesten als Rechtsshift implementiert werden kann.
+\item Falls $k>0$, fahre weiter bei 2.
+\end{enumerate}
+\end{algorithmus}
+
+\begin{beispiel}
+Die Berechnung von $1.1^{17}$ mit diesem Algorithmus ergibt
+\begin{enumerate}
+\item $p=1$, $q=1.1$
+\item $k$ ist ungerade: $p:=1.1$
+\item $q:=q^2=1.21$, $k := 8$
+\item $k$ ist gerade
+\item $q:=q^2=1.4641$, $k := 4$
+\item $k$ ist gerade
+\item $q:=q^2=2.14358881$, $k := 2$
+\item $k$ ist gerade
+\item $q:=q^2=4.5949729863572161$, $k := 1$
+\item $k$ ist ungerade: $p:=1.1\cdot p = 5.05447028499293771$
+\item $k:=0$
+\end{enumerate}
+Multiplikationen sind nur nötig in den Schritten 3, 5, 7, 9, 10, es
+werden also genau $5$ Multiplikationen ausgeführt.
+\end{beispiel}
\subsection{Rechenoperationen in $\mathbb{F}_p$
\label{buch:subsection:rechenoperationen-in-fp}}
-% XXX Multiplikation: modulare Reduktion mit jedem Digit
-% XXX Divide-and-Conquer
+Die Multiplikation macht aus zwei Faktoren $a$ und $b$ ein
+Resultat mit Bitlänge $\log_2 a+\log_2 b$, die Bitlänge wird
+also typischerweise verdoppelt.
+In $\mathbb{F}_p$ muss anschliessend das Resultat $\mod p$
+reduziert werden, so dass die Bitlänge wieder höchstens
+$\log_2p$ ist.
+In folgenden soll gezeigt werden, dass dieser Speicheraufwand
+für eine Binärimplementation deutlich reduziert werden kann,
+wenn die Reihenfolge der Operationen modifiziert wird.
+
+Für die Multiplikation von $41\cdot 47$ rechnet man im Binärsystem
+\begin{center}
+\begin{tabular}{>{$}r<{$}}
+\texttt{{\color{darkgreen}1}0{\color{red}1}001}\cdot\texttt{101111}\\
+\hline
+\texttt{101111}\\
+\texttt{{\color{red}101111}\phantom{000}}\\
+\texttt{{\color{darkgreen}101111}\phantom{00000}}\\
+\hline
+\texttt{11110000111}\\
+\hline
+\end{tabular}
+\end{center}
+In $\mathbb{F}_{53}$ muss im Anschluss Modulo $p=53$ reduziert werden.
+
+Der Speicheraufwand entsteht zunächst dadurch, dass durch die Multiplikation
+mit $2$ die Summanden immer länger werden.
+Man kann den die Sumanden kurz halten, indem man jedesmal, wenn
+der Summand nach der Multiplikation mit $2$ grösser als $p$ geworden ist,
+$p$ subtrahiert (Abbildung~\ref{buch:crypto:fig:reduktion}).
+Ebenso kann bei nach jeder Addition das bereits reduzierten zweiten
+Faktors wieder reduziert werden.
+Die Anzahl der nötigen Reduktionsoperationen wird durch diese
+frühzeitig durchgeführten Reduktionen nicht teurer als bei der Durchführung
+des Divisionsalgorithmus.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}}
+\text{Multiplikation mit $2$}&\text{Reduktion?}&\text{reduziert}
+ &\text{Summanden}&\text{Summe}&\text{reduziert}
+\\
+\hline
+\texttt{101111} & &\texttt{101111}
+ &\texttt{101111}&\texttt{101111}&\texttt{101111}
+\\
+\texttt{101111\phantom{0}} &\texttt{{\color{red}1011110}}&\texttt{101001}
+ & & &
+\\
+\texttt{101111\phantom{00}} &\texttt{0{\color{red}111010}}&\texttt{011101}
+ & & &
+\\
+\texttt{101111\phantom{000}} &\texttt{0001010}&\texttt{000101}
+ &\texttt{000101}&\texttt{110100}&\texttt{110100}
+\\
+\texttt{101111\phantom{0000}} &\texttt{0010100}&\texttt{001010}
+ & & &
+\\
+\texttt{101111\phantom{00000}}&\texttt{0101000}&\texttt{010100}
+ &\texttt{010100}&\texttt{{\color{red}1001000}}&\texttt{10011}\rlap{$\mathstrut=19$}
+\end{tabular}
+\end{center}
+\caption{Multiplikation von $41=\texttt{101001}_2$ mit $47=\texttt{101111}_2$,
+Reduktion nach jeder Multiplikation mit $2$: falls das Resultat
+$>p$ ist, wie in den rot markierten Zeilen $p=53=\texttt{110101}_2$
+durchgeführt.
+Bei der Bildung der Summe wird ebenfalls in jedem Schritt falls nötig
+reduziert, angezeigt durch die roten Zahlen in der zweitletzten
+Spalte.
+Die Anzahl der Subtraktionen, die für die Reduktionen nötig sind, ist
+von der selben Grössenordnung wie bei der Durchführung des
+Divisionsalgorithmus.
+\label{buch:crypto:fig:reduktion}}
+\end{figure}
+
+Es ist also möglich, mit gleichem Aufwand an Operationen
+aber mit halbe Speicherplatzbedarf die Multiplikationen in $\mathbb{F}_p$
+durchzuführen.
+Die Platzeinsparung ist besonders bei Implementationen in Hardware
+hilfreich, wo on-die Speicherplatz teuer sein kann.
\subsection{Rechenoperationen in $\mathbb{F}_{2^l}$
\label{buch:subsection:rechenoperatione-in-f2l}}
-% XXX Darstellung eines Körpers der Art F_{2^l}
-% XXX Addition (XOR) und Multiplikation
-% XXX Beispiel F_{2^8}
+Von besonderem praktischem Interesse sind die endlichen Körper
+$\mathbb{F}_{2^l}$.
+Die arithmetischen Operationen in diesen Körpern lassen sich besonders
+effizient in Hardware realisieren.
+
+\subsubsection{Zahldarstellung}
+Ein endlicher Körper $\mathbb{F}_{2^l}$ ist definiert durch ein
+irreduzibles Polynom in $\mathbb{F}_2[X]$ vom Grad $2^l$
+\[
+m(X)
+=
+X^l + m_{l-1}X^{l-1} + m_{l-2}X^{l-2} + \dots + m_2X^2 + m_1X + m_0
+\]
+gegeben.
+Ein Element in $\mathbb{F}_2[X]/(m)$ kann dargestellt werden durch ein
+Polynom vom Grad $l-1$, also durch
+\[
+a = a_{l-1}X^{l-1} + a_{l-2}X^{l-2} +\dots + a_2X^2 + a_1X + a_0.
+\]
+In einer Maschine kann eine Zahl also als eine Bitfolge der Länge $l$
+dargestellt werden.
+
+\subsubsection{Addition}
+Die Addition in $\mathbb{F}_2$ ist in Hardware besonders leicht zu
+realisieren.
+Die Addition ist die XOR-Operation, die Multiplikation ist die UND-Verknüfung.
+Ausserdem stimmen in $\mathbb{F}_2$ Addition und Subtraktion überein.
+
+Die Addition zweier Polynome erfolgt komponentenweise.
+Die Addition von zwei Elemente von $\mathbb{F}_{2^l}$ kann also
+durch die bitweise XOR-Verknüpfung der Darstellungen der Summanden
+erfolgen.
+Diese Operation ist in einem einzigen Maschinenzyklus realisierbar.
+Die Subtraktion, die für die Reduktionsoperation module $m(X)$ nötig
+ist, ist mit der Addition identisch.
+
+\subsubsection{Multiplikation}
+Die Multiplikation zweier Polynome benötigt zunächst die Multiplikation
+mit $X$, wodurch der Grad des Polynoms ansteigt und möglicherweise so
+gross wird, dass eine Reduktionsoperation modulo $m(X)$ nötig wird.
+Die Reduktion wird immer dann nötig, wenn der Koeffizient von $X^l$
+nicht $0$ ist.
+Der Koeffizient kann dann zum Verschwinden gebracht werden, indem
+$m(X)$ addiert wird.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/90-crypto/images/schieberegister.pdf}
+\caption{Implementation der Multiplikation mit $X$ in einem
+endlichen Körper $\mathbb{F}_{2^l}$ mit dem Minimalpolynom
+$m(X) = X^8+X^4+X^3+X^+1$ als Feedback-Schieberegister.
+\label{buch:crypto:fig:schieberegister}}
+\end{figure}
+
+In Abbildung~\ref{buch:crypto:fig:schieberegister} wird gezeigt,
+wie die Reduktion erfolgt, wenn die Multiplikation mit $X$, also der
+Shift nach links, einen Überlauf ergibt.
+Das Minimalpolynom $m(X)=X^8+X^4+X^3+X+1$ bedeutet, dass in $\mathbb{F}_{2^l}$
+$X^8=X^4+X^3+X+1$ gilt, so dass man das Überlaufbit durch
+$X^4+X^3+X+1$ ersetzen und addieren kann.
+
+Ein Produktes $p(X)\cdot q(X)$, wobei $p(X)$ und
+$q(X)$ Repräsentaten von Elementen $\mathbb{F}_{2^l}$ sind, kann jetzt
+wie folgt berechnet werden.
+Mit dem Schieberegister werden die Vielfachen $X^k\cdot p(X)$
+für $k=0,\dots,l-1$ berechnet.
+Diejenigen Vielfachen, für die der Koeffizient von $X^k$ in $q(X)$
+von $0$ verschieden ist werden aufsummiert und ergeben das Produkt.
+Der Prozess in Abbildung~\ref{buch:crypto:fig:multiplikation}
+dargestellt.
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/90-crypto/images/multiplikation.pdf}
+\caption{Multiplikation zweier Elemente von $\mathbb{F}_{2^l}$.
+Mit Hilfe des Schieberegisters am linken Rand werden die Produkte
+$X\cdot p(X)$, $X^2\cdot p(X),\dots,X^7\cdot p(X)$ nach der in
+Abbildung~\ref{buch:crypto:fig:schieberegister} dargestellten
+Methode berechnet.
+Am rechten Rand werden diejenigen $X^k\cdot p(X)$ aufaddiert,
+für die der $X^k$-Koeffizient von $q(X)$ von $0$ verschieden ist.
+\label{buch:crypto:fig:multiplikation}}
+\end{figure}
+
+
% XXX Beispiel F einer Oakley-Gruppe
diff --git a/buch/chapters/90-crypto/chapter.tex b/buch/chapters/90-crypto/chapter.tex
index 43ac8de..d2fcbbf 100644
--- a/buch/chapters/90-crypto/chapter.tex
+++ b/buch/chapters/90-crypto/chapter.tex
@@ -20,7 +20,7 @@ In diesem Abschnitt soll dies an einigen Beispielen gezeigt werden.
\input{chapters/90-crypto/arith.tex}
\input{chapters/90-crypto/ff.tex}
\input{chapters/90-crypto/aes.tex}
-\input{chapters/90-crypto/rs.tex}
+%\input{chapters/90-crypto/rs.tex}
\section*{Übungsaufgaben}
\rhead{Übungsaufgaben}
diff --git a/buch/chapters/90-crypto/ff.tex b/buch/chapters/90-crypto/ff.tex
index 4ab9c34..535b359 100644
--- a/buch/chapters/90-crypto/ff.tex
+++ b/buch/chapters/90-crypto/ff.tex
@@ -26,7 +26,7 @@ In der Praxis werden aber $g$ und $a$ Zahlen mit vielen Binärstellen
sein, die die wiederholte Multiplikation ist daher sicher nicht
effizient, das Kriterium der einfachen Berechenbarkeit scheint
also nicht erfüllt.
-Der folgende Algorithmus berechnet die Potenz in $O(\log_2 a$
+Der folgende Algorithmus berechnet die Potenz in $O(\log_2 a)$
Multiplikationen.
\begin{algorithmus}[Divide-and-conquer]
diff --git a/buch/chapters/90-crypto/images/Makefile b/buch/chapters/90-crypto/images/Makefile
index 9480163..bbb960f 100644
--- a/buch/chapters/90-crypto/images/Makefile
+++ b/buch/chapters/90-crypto/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: dh.pdf elliptic.pdf
+all: dh.pdf elliptic.pdf schieberegister.pdf multiplikation.pdf
dh.pdf: dh.tex
pdflatex dh.tex
@@ -11,3 +11,9 @@ dh.pdf: dh.tex
elliptic.pdf: elliptic.tex
pdflatex elliptic.tex
+schieberegister.pdf: schieberegister.tex
+ pdflatex schieberegister.tex
+
+multiplikation.pdf: multiplikation.tex
+ pdflatex multiplikation.tex
+
diff --git a/buch/chapters/90-crypto/images/multiplikation.pdf b/buch/chapters/90-crypto/images/multiplikation.pdf
new file mode 100644
index 0000000..86345b8
--- /dev/null
+++ b/buch/chapters/90-crypto/images/multiplikation.pdf
Binary files differ
diff --git a/buch/chapters/90-crypto/images/multiplikation.tex b/buch/chapters/90-crypto/images/multiplikation.tex
new file mode 100644
index 0000000..27c4329
--- /dev/null
+++ b/buch/chapters/90-crypto/images/multiplikation.tex
@@ -0,0 +1,464 @@
+%
+% multiplikation.tex --
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\s{0.45}
+
+\def\punkt#1#2{({#1*\s},{#2*\s})}
+
+\def\pfeile{
+ \foreach \x in {0.5,1.5,...,7.5}{
+ \draw[->,color=blue] \punkt{\x}{-2.1} -- \punkt{(\x-1)}{-3.3};
+ }
+}
+
+\begin{scope}[yshift=0.1cm]
+ \node at \punkt{0}{0.5} [left] {$p(X)=\mathstrut$};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{1}};
+ \foreach \x in {0.5,1.5,...,7.5}{
+ \draw[->,color=blue] \punkt{\x}{-0.1} -- \punkt{(\x-1)}{-1.3};
+ }
+\end{scope}
+
+\begin{scope}[yshift=-1cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{1}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+ \draw[->,color=darkgreen]
+ \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+ \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{0}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-3cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{1}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{1}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{0}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{0}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-5cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{1}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{1}};
+ \node at \punkt{1.5}{-1.5} {\texttt{1}};
+ \node at \punkt{2.5}{-1.5} {\texttt{0}};
+ \node at \punkt{3.5}{-1.5} {\texttt{0}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{1}};
+ \node at \punkt{6.5}{-1.5} {\texttt{0}};
+ \node at \punkt{7.5}{-1.5} {\texttt{0}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-7cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{1}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+ \draw[->,color=darkgreen]
+ \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+ \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{1}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{0}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-9cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+ \draw[->,color=darkgreen]
+ \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+ \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{1}};
+ \node at \punkt{5.5}{-1.5} {\texttt{1}};
+ \node at \punkt{6.5}{-1.5} {\texttt{0}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-11cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{1}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{1}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{0}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-13cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{1}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{1}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{0}};
+ \node at \punkt{4.5}{-1.5} {\texttt{1}};
+ \node at \punkt{5.5}{-1.5} {\texttt{1}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+% \pfeile
+\end{scope}
+
+\begin{scope}[xshift=9cm]
+
+\begin{scope}[yshift=0.1cm]
+ \draw[->] \punkt{-11.8}{0.5} -- \punkt{-0.1}{0.5};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \draw \punkt{4}{-0.1} -- \punkt{4}{-3};
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{1}};
+\end{scope}
+
+\def\summation#1#2#3#4#5#6#7#8{
+ \draw[->] \punkt{4}{2.3} -- \punkt{4}{1};
+
+ \draw[->] \punkt{-11.8}{0.5} -- \punkt{3.5}{0.5};
+
+ \draw \punkt{4}{0.5} circle[radius=0.2];
+ \draw \punkt{4}{0.20} -- \punkt{4}{0.80};
+ \draw \punkt{3.7}{0.5} -- \punkt{4.3}{0.5};
+
+ \draw[->] \punkt{4}{-0.05} -- \punkt{4}{-0.95};
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+
+ \node at \punkt{0.5}{-1.5} {\texttt{#1}};
+ \node at \punkt{1.5}{-1.5} {\texttt{#2}};
+ \node at \punkt{2.5}{-1.5} {\texttt{#3}};
+ \node at \punkt{3.5}{-1.5} {\texttt{#4}};
+ \node at \punkt{4.5}{-1.5} {\texttt{#5}};
+ \node at \punkt{5.5}{-1.5} {\texttt{#6}};
+ \node at \punkt{6.5}{-1.5} {\texttt{#7}};
+ \node at \punkt{7.5}{-1.5} {\texttt{#8}};
+}
+
+\begin{scope}[yshift=-1.9cm]
+ \summation{1}{0}{0}{1}{0}{1}{0}{1}
+\end{scope}
+
+\begin{scope}[yshift=-3.9cm]
+ \summation{1}{1}{1}{1}{0}{1}{1}{1}
+\end{scope}
+
+\begin{scope}[yshift=-5.9cm]
+ \summation{1}{1}{1}{1}{0}{1}{1}{1}
+\end{scope}
+
+\begin{scope}[yshift=-7.9cm]
+ \summation{0}{1}{1}{0}{0}{1}{0}{0}
+\end{scope}
+
+\begin{scope}[yshift=-9.9cm]
+ \summation{0}{1}{0}{1}{1}{0}{0}{1}
+\end{scope}
+
+\begin{scope}[yshift=-11.9cm]
+ \summation{0}{1}{0}{1}{1}{0}{0}{1}
+\end{scope}
+
+\begin{scope}[yshift=-13.9cm]
+ \summation{0}{0}{1}{1}{0}{1}{1}{0}
+ \node at \punkt{0}{-1.5} [left] {$p(X)\cdot q(X)=\mathstrut$};
+\end{scope}
+
+\end{scope}
+
+\begin{scope}[xshift=5cm]
+
+\begin{scope}[yshift=2cm]
+ \node at \punkt{0}{0.5} [left] {$q(X)=\mathstrut$};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{1}};
+
+ \draw[->] \punkt{7.5}{-0.1} -- ({7.5*\s},{-1.3});
+ \node at ({7.5*\s},{-1.2}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \def\y{1.2}
+
+ \draw[->] \punkt{6.5}{-0.1} -- ({6.5*\s},{-1*2-\y-0.1});
+ \node at ({6.5*\s},{-1*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
+
+ \draw[->] \punkt{5.5}{-0.1} -- ({5.5*\s},{-2*2-\y-0.1});
+ \node at ({5.5*\s},{-2*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \draw[->] \punkt{4.5}{-0.1} -- ({4.5*\s},{-3*2-\y-0.1});
+ \node at ({4.5*\s},{-3*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
+
+ \draw[->] \punkt{3.5}{-0.1} -- ({3.5*\s},{-4*2-\y-0.1});
+ \node at ({3.5*\s},{-4*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \draw[->] \punkt{2.5}{-0.1} -- ({2.5*\s},{-5*2-\y-0.1});
+ \node at ({2.5*\s},{-5*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \draw[->] \punkt{1.5}{-0.1} -- ({1.5*\s},{-6*2-\y-0.1});
+ \node at ({1.5*\s},{-6*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
+
+ \draw[->] \punkt{0.5}{-0.1} -- ({0.5*\s},{-7*2-\y-0.1});
+ \node at ({0.5*\s},{-7*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+\end{scope}
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/images/schieberegister.pdf b/buch/chapters/90-crypto/images/schieberegister.pdf
new file mode 100644
index 0000000..30b675b
--- /dev/null
+++ b/buch/chapters/90-crypto/images/schieberegister.pdf
Binary files differ
diff --git a/buch/chapters/90-crypto/images/schieberegister.tex b/buch/chapters/90-crypto/images/schieberegister.tex
new file mode 100644
index 0000000..7c24e52
--- /dev/null
+++ b/buch/chapters/90-crypto/images/schieberegister.tex
@@ -0,0 +1,120 @@
+%
+% schieberegister.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\s{0.8}
+
+\def\punkt#1#2{({#1*\s},{#2*\s})}
+
+\fill[color=blue!20] \punkt{0}{0} rectangle \punkt{8}{1};
+
+\node at \punkt{0.5}{1} [above] {$X^7\mathstrut$};
+\node at \punkt{3}{1} [above] {$+\mathstrut$};
+\node at \punkt{3.5}{1} [above] {$X^4\mathstrut$};
+\node at \punkt{5}{1} [above] {$+\mathstrut$};
+\node at \punkt{5.5}{1} [above] {$X^2\mathstrut$};
+\node at \punkt{7}{1} [above] {$+\mathstrut$};
+\node at \punkt{7.5}{1} [above] {$1\mathstrut$};
+
+\node at \punkt{0}{1} [above left] {\llap{$p(X)=\mathstrut$}};
+
+\node at \punkt{0.5}{0.5} {\texttt{1}};
+\node at \punkt{1.5}{0.5} {\texttt{0}};
+\node at \punkt{2.5}{0.5} {\texttt{0}};
+\node at \punkt{3.5}{0.5} {\texttt{1}};
+\node at \punkt{4.5}{0.5} {\texttt{0}};
+\node at \punkt{5.5}{0.5} {\texttt{1}};
+\node at \punkt{6.5}{0.5} {\texttt{0}};
+\node at \punkt{7.5}{0.5} {\texttt{1}};
+
+\draw \punkt{0}{0} rectangle \punkt{8}{1};
+\foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+}
+
+\fill[color=blue!20] \punkt{-1}{-3} rectangle \punkt{7}{-2};
+\fill[color=darkgreen!20] \punkt{0}{-4} rectangle \punkt{8}{-3};
+
+\node[color=darkgreen] at \punkt{-1}{-1.5} [left]
+ {$m(X) = X^8+X^4+X^3+X+1$};
+
+\node[color=darkgreen] at \punkt{-1}{-2.7} [left]
+ {$\underbrace{X^4+X^3+X+1}_{}= X^8=\mathstrut$};
+
+\coordinate (A) at ({-4.15*\s},{-3*\s});
+\coordinate (B) at ({0*\s},{-3.5*\s});
+
+\draw[->,color=red,shorten >= 0.1cm] (A) to[out=-90,in=180] (B);
+\node[color=red] at \punkt{-3.1}{-3.8} [below] {Feedback};
+
+\node at \punkt{-0.5}{-2.5} {\texttt{1}};
+\node at \punkt{0.5}{-2.5} {\texttt{0}};
+\node at \punkt{1.5}{-2.5} {\texttt{0}};
+\node at \punkt{2.5}{-2.5} {\texttt{1}};
+\node at \punkt{3.5}{-2.5} {\texttt{0}};
+\node at \punkt{4.5}{-2.5} {\texttt{1}};
+\node at \punkt{5.5}{-2.5} {\texttt{0}};
+\node at \punkt{6.5}{-2.5} {\texttt{1}};
+\node at \punkt{7.5}{-2.5} {\texttt{0}};
+
+\node[color=darkgreen] at \punkt{0.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{1.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{2.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{3.5}{-3.5} {\texttt{1}};
+\node[color=darkgreen] at \punkt{4.5}{-3.5} {\texttt{1}};
+\node[color=darkgreen] at \punkt{5.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{6.5}{-3.5} {\texttt{1}};
+\node[color=darkgreen] at \punkt{7.5}{-3.5} {\texttt{1}};
+
+\draw \punkt{0}{-4} rectangle \punkt{8}{-2};
+\draw \punkt{0}{-3} -- \punkt{8}{-3};
+\foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-4} -- \punkt{\x}{-2};
+}
+
+\foreach \x in {0.5,1.5,...,7.5}{
+ \draw[->,color=blue] \punkt{\x}{-0.1} -- \punkt{(\x-1)}{-1.9};
+}
+
+\draw \punkt{0}{-6} rectangle \punkt{8}{-5};
+\foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-6} -- \punkt{\x}{-5};
+}
+
+\node at \punkt{0.5}{-5.5} {\texttt{0}};
+\node at \punkt{1.5}{-5.5} {\texttt{0}};
+\node at \punkt{2.5}{-5.5} {\texttt{1}};
+\node at \punkt{3.5}{-5.5} {\texttt{1}};
+\node at \punkt{4.5}{-5.5} {\texttt{0}};
+\node at \punkt{5.5}{-5.5} {\texttt{0}};
+\node at \punkt{6.5}{-5.5} {\texttt{0}};
+\node at \punkt{7.5}{-5.5} {\texttt{1}};
+
+\node at \punkt{4}{-4.5} {$\|$};
+
+\node at \punkt{10.3}{-3} [left]
+ {$\left.\begin{matrix}\\ \\ \\ \end{matrix}\right\} + = \text{XOR}$};
+
+\draw[<-,shorten >= 0.1cm, shorten <= 0.1cm]
+ \punkt{8.0}{-2.0} arc (-30:30:{2.0*\s});
+\node at \punkt{8.3}{-1} [right] {$\mathstrut \cdot X$};
+
+\node at \punkt{8.1}{-5.5} [right] {$=X\cdot p(X)\mathstrut$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
index 5bf4558..7ed1e57 100644
--- a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
+++ b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
@@ -6,7 +6,7 @@ Welchen gemeinsamen Schlüssel verwenden $A$ und $B$?
\begin{loesung}
Der zu verwendende gemeinsame Schlüssel ist
-$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_2027$.
+$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_{2027}$.
Diese Potenz kann man mit dem Divide-and-Conquer-Algorithmus effizient
berechnen.
Die Binärdarstellung des privaten Schlüssels von $A$ ist