diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-04-13 15:46:41 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-04-13 15:46:41 +0200 |
commit | ee33b6de909df12cdd757abcb5db04fc9d2b5a56 (patch) | |
tree | 77327b4edf4d954c95bfb23dfe5e6e923199941a | |
parent | update fs-fft (diff) | |
download | SeminarMatrizen-ee33b6de909df12cdd757abcb5db04fc9d2b5a56.tar.gz SeminarMatrizen-ee33b6de909df12cdd757abcb5db04fc9d2b5a56.zip |
kgV
-rw-r--r-- | buch/chapters/30-endlichekoerper/euklid.tex | 236 |
1 files changed, 236 insertions, 0 deletions
diff --git a/buch/chapters/30-endlichekoerper/euklid.tex b/buch/chapters/30-endlichekoerper/euklid.tex index db326f8..9bc36a6 100644 --- a/buch/chapters/30-endlichekoerper/euklid.tex +++ b/buch/chapters/30-endlichekoerper/euklid.tex @@ -431,6 +431,7 @@ zur Bestimmung des grössten gemeinsamen Teilers von $76415$ und $23205$ zur Berechnung der Koeffizienten $c_k$ und $d_k$ Wir schreiben die gefundenen Zahlen in eine Tabelle: \begin{center} +\label{buch:endlichekoerper:beispiel1erweitert} \renewcommand{\arraystretch}{1.1} \begin{tabular}{|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}>{$}r<{$}|} \hline @@ -614,4 +615,239 @@ Aus den letzten zwei Zeilen folgt $ua-vb = ab/g - ab/g = 0$, wie erwartet. \end{beispiel} +% +% Das kleinste gemeinsame Vielfache +% +\subsection{Das kleinste gemeinsame Vielfache +\label{buch:subsection:daskgv}} +Das kleinste gemeinsame Vielfache zweier Zahlen $a$ und $b$ ist +\[ +\operatorname{kgV}(a,b) += +\frac{ab}{\operatorname{ggT}(a,b)}. +\] +Wir suchen nach einen Algorithmus, mit dem man das kleinste gemeinsame +Vielfache effizient berechnen kann. + +Die Zahlen $a$ und $b$ sind beide Vielfache des grössten gemeinsamen +Teilers $g=\operatorname{ggT}(a,b)$, es gibt also Zahlen $u$ und $v$ derart, +dass $a=ug$ und $b=vg$. +Wenn $t$ ein gemeinsamer Teiler von $u$ und $v$ ist, dann ist $tg$ ein +grösserer gemeinsamer Teiler von $a$ und $b$. +Dies kann nicht sein, also müssen $u$ und $v$ teilerfremd sein. +Das kleinste gemeinsame Vielfache von $a$ und $b$ ist dann $ugv=av=ub$. +Die Bestimmung des kleinsten gemeinsamen Vielfachen ist also gleichbedeutend +mit der Bestimmung der Zahle $u$ und $v$. + +Die definierende Eigenschaften von $u$ und $v$ kann man in Matrixform als +\begin{equation} +\begin{pmatrix} +a\\b +\end{pmatrix} += +\underbrace{ +\begin{pmatrix} +u&?\\ +v&? +\end{pmatrix}}_{\displaystyle =K} +\begin{pmatrix} +\operatorname{ggT}(a,b)\\ 0 +\end{pmatrix} +\label{buch:eindlichekoerper:eqn:uvmatrix} +\end{equation} +geschrieben werden, wobei wir die Matrixelemente $?$ nicht kennen. +Diese Elemente müssen wir auch nicht kennen, um $u$ und $v$ zu bestimmen. + +Bei der Bestimmung des grössten gemeinsamen Teilers wurde der Vektor auf +der rechten Seite von~\eqref{buch:eindlichekoerper:eqn:uvmatrix} bereits +gefunden. +Die Matrizen $Q(q_i)$, die die einzelne Schritte des euklidischen +Algorithmus beschreiben, ergeben ihn als +\[ +\begin{pmatrix} +\operatorname{ggT}(a,b)\\0 +\end{pmatrix} += +Q(q_n)Q(q_{n-1}) \dots Q(q_1)Q(q_0) +\begin{pmatrix}a\\b\end{pmatrix}. +\] +Indem wir die Matrizen $Q(q_n)$ bis $Q(q_0)$ auf die linke Seite der +Gleichung schaffen, erhalten wir +\[ +\begin{pmatrix}a\\b\end{pmatrix} += +Q(q_0)^{-1} +Q(q_1)^{-1} +\dots +Q(q_{n-1})^{-1} +Q(q_n) +\begin{pmatrix}\operatorname{ggT}(a,b)\\0\end{pmatrix}. +\] +Eine mögliche Lösung für die Matrix $K$ in +\eqref{buch:eindlichekoerper:eqn:uvmatrix} +ist der die Matrix +\[ +K += +Q(q_0)^{-1} +Q(q_1)^{-1} +\dots +Q(q_{n-1})^{-1} +Q(q_n). +\] +Insbesondere ist die Matrix $K$ die Inverse der früher gefundenen +Matrix $Q$. + +Die Berechnung der Matrix $K$ als Inverse von $Q$ ist nicht sehr +effizient. +Genauso wie es möglich war, das Produkt $Q$ der Matrizen +$Q(q_k)$ iterativ zu bestimmen, muss es auch eine Rekursionsformel +für das Produkt der inversen Matrizen $Q(q_k)^{-1}$ geben. + +Schreiben wir die die gesuchte Matrix +\[ +K_k += +Q(q_0)^{-1}\dots Q(q_{k-1})^{-1} += +\begin{pmatrix} +e_k & e_{k-1}\\ +f_k & f_{k-1} +\end{pmatrix}, +\] +dann kann, kann $K_k$ durch die Rekursion +\[ +K_{k+1} += +K_{k} Q(q_k)^{-1} += +K_k K(q_k) +\qquad\text{mit}\qquad +K_0 = \begin{pmatrix}1&0\\0&1\end{pmatrix} = I +\] +berechnen. +Die Inverse von $Q(q)$ ist +\[ +K(q) += +Q(q)^{-1} += +\frac{1}{\det Q(q)} +\begin{pmatrix} +q&1\\ +1&0 +\end{pmatrix} +\quad\text{denn}\quad +K(q)Q(q) += +\begin{pmatrix} +q&1\\ +1&0 +\end{pmatrix} +\begin{pmatrix} +0&1\\ +1&-q +\end{pmatrix} += +\begin{pmatrix} +1&0\\ +0&1 +\end{pmatrix}. +\] +Da die zweite Spalte von $K(q)$ die erste Spalte einer Einheitsmatrix +ist, wird die zweite Spalte des Produktes $AK(q)$ immer die erste Spalte +von $A$ sein. +In $K_{k+1}$ ist daher nur die erste Spalte neu, die zweite Spalte ist +die erste Spalte von $K_k$. + +Wenn $K_k$ die Matrixelemente +\[ +K_k += +\begin{pmatrix} +e_k & e_{k-1} \\ +f_k & f_{k-1} +\end{pmatrix} +\qquad\text{und}\qquad +K_0 = +\begin{pmatrix} +1&0\\ +0&1 +\end{pmatrix} +\Rightarrow +\left\{ +\begin{aligned} +e_0 &= 1 & e_{-1} &= 0\\ +f_0 &= 0 & f_{-1} &= 1 +\end{aligned} +\right. +\] +Daraus kann man Rekursionsformeln für die Folgen $e_k$ und $f_k$ +ablesen, es gilt +\begin{align*} +e_{k+1} &= q_ke_k + e_{k-1} \\ +f_{k+1} &= q_kf_k + f_{k-1} +\end{align*} +für $k=0,1,\dots ,n$. +Damit können $e_k$ und $f_k$ gleichzeitig mit den Zahlen $c_k$ und $d_k$ +in einer Tabelle berechnen. + +\begin{beispiel} +Wir erweitern das Beispiel von +Seite~\pageref{buch:endlichekoerper:beispiel1erweitert} +um die beiden Spalten zur Berechnung von $e_k$ und $f_k$: +\begin{center} +\renewcommand{\arraystretch}{1.1} +\begin{tabular}{|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}|} +\hline +k& a_k& b_k& q_k& r_k& c_k& d_k& e_k& f_k\\ +\hline + & & & & & 1& 0& 0& 1\\ +0& 76415& 23205& 3& 6800& 0& 1& 1& 0\\ +1& 23205& 6800& 3& 2805& 1& -3& 3& 1\\ +2& 6800& 2805& 2& 1190& -3& 10& 10& 3\\ +3& 2805& 1190& 2& 425& 7& -23& 23& 7\\ +4& 1190& 425& 2& 340& -17& 56& 56& 17\\ +5& 425& 340& 1& 85& 41& -135& 135& 41\\ +6& 340& 85& 4& 0& -58& 191& 191& 58\\ +7& 85& 0& & & 273& -899& 899& 273\\ +\hline +\end{tabular} +\end{center} +Der grösste gemeinsame Teiler ist $\operatorname{ggT}(a,b)=85$. +Aus der letzten Zeile der Tabelle kann man jetzt die Zahlen $u=e_7=899$ +und $v=f_7=273$ ablesen, und tatsächlich ist +\[ +a=76415 = 899\cdot 85 +\qquad\text{und}\qquad +b=23205 = 273 \cdot 85. +\] +Daraus kann man dann auch das kleinste gemeinsame Vielfache ablesen, es ist +\[ +\operatorname{kgV}(a,b) += +\operatorname{kgV}(76415,23205) += +\left\{ +\begin{aligned} +ub +&= +899\cdot 23205\\ +va +&= +273\cdot 76415 +\end{aligned} +\right\} += +20861295. +\qedhere +\] +\end{beispiel} + +Der erweiterte Algorithmus kann auch dazu verwendet werden, +das kleinste gemeinsame Vielfache zweier Polynome zu berechnen. +Dies wird zum Beispiel bei der Decodierung des Reed-Solomon-Codes in +Kapitel~\ref{chapter:reedsolomon} verwendet. + + |