aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen/natuerlich.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@othello.ch>2021-09-03 11:26:59 +0200
committerAndreas Müller <andreas.mueller@othello.ch>2021-09-03 11:26:59 +0200
commitb6f72c598394253f7105f1507dcf8148ce2fc904 (patch)
treefdf69458a9a6fc33904f6617454f1e7f0a534cf3 /buch/chapters/05-zahlen/natuerlich.tex
parentadd new image (diff)
downloadSeminarMatrizen-b6f72c598394253f7105f1507dcf8148ce2fc904.tar.gz
SeminarMatrizen-b6f72c598394253f7105f1507dcf8148ce2fc904.zip
hermitesch/selbstadjungiert
Diffstat (limited to '')
-rw-r--r--buch/chapters/05-zahlen/natuerlich.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex
index 53e7295..8c51346 100644
--- a/buch/chapters/05-zahlen/natuerlich.tex
+++ b/buch/chapters/05-zahlen/natuerlich.tex
@@ -282,7 +282,7 @@ Der Vorteil dieser Definition ist, dass sie die früher definierten
natürlichen Zahlen nicht braucht, diese werden jetzt erst konstruiert.
Dazu fassen wir in der Menge aller endlichen Mengen die gleich mächtigen
Mengen zusammen, bilden also die Äquivalenzklassen der Relation $\sim$.
-\index{Äquivalenzklasse}%
+\index{Aquivalenzklasse@Äquivalenzklasse}%
Der Vorteil dieser Sichtweise ist, dass die natürlichen Zahlen ganz
explizit als die Anzahlen von Elementen einer endlichen Menge entstehen.