diff options
author | Reto <reto.fritsche@ost.ch> | 2021-08-31 23:42:02 +0200 |
---|---|---|
committer | Reto <reto.fritsche@ost.ch> | 2021-08-31 23:42:02 +0200 |
commit | 2657b49e75509661039bd8b35fdf9a23d4807b1b (patch) | |
tree | 5cb374246353de7357435d9abc09efa9172ef63f /buch/chapters/05-zahlen/reell.tex | |
parent | added syndrome table (diff) | |
parent | Kapitel 3 (diff) | |
download | SeminarMatrizen-2657b49e75509661039bd8b35fdf9a23d4807b1b.tar.gz SeminarMatrizen-2657b49e75509661039bd8b35fdf9a23d4807b1b.zip |
Merge remote-tracking branch 'upstream/master' into mceliece
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/05-zahlen/reell.tex | 49 |
1 files changed, 45 insertions, 4 deletions
diff --git a/buch/chapters/05-zahlen/reell.tex b/buch/chapters/05-zahlen/reell.tex index d5a193f..06eb7aa 100644 --- a/buch/chapters/05-zahlen/reell.tex +++ b/buch/chapters/05-zahlen/reell.tex @@ -10,6 +10,15 @@ In den rationalen Zahlen lassen sich algebraische Gleichungen höheren Grades immer noch nicht lösen. Dass die Gleichung $x^2=2$ keine rationale Lösung hat, ist schon den Pythagoräern aufgefallen. +\index{Pythagoräer} +Ziel dieses Abschnitts ist, den Körper $\mathbb{Q}$ zu einem +Körper $\mathbb{R}$ zu erweitern, in dem die Gleichung +gelöst werden kann, ohne dabei Ordnungsrelation zu zerstören, die +die hilfreiche und anschauliche Vorstellung der Zahlengeraden +liefert. +\index{Zahlengerade}% + +\subsubsection{Intervallschachtelung} Die geometrische Intuition der Zahlengeraden führt uns dazu, nach Zahlen zu suchen, die gute Approximationen für $\sqrt{2}$ sind. Wir können zwar keinen Bruch angeben, dessen Quadrat $2$ ist, aber @@ -29,16 +38,47 @@ Zahl $\sqrt{2}$ gewonnen worden.}. Jedes der Intervalle enthält auch das nachfolgende Intervall, und die intervalllänge konvergiert gegen 0. Eine solche \emph{Intervallschachtelung} beschreibt also genau eine Zahl, +\index{Intervallschachtelung}% aber möglicherweise keine, die sich als Bruch schreiben lässt. +\subsubsection{Reelle Zahlen als Folgengrenzwerte} +Mit einer Intervallschachtelung lässt sich $\sqrt{2}$ zwar festlegen, +noch einfacher wäre aber eine Folge von rationalen Zahlen $a_n\in\mathbb{Q}$ +derart, die $\sqrt{2}$ beliebig genau approximiert. +In der Analysis definiert man zu diesem Zweck, dass $a$ der Grenzwert +einer Folge $(a_n)_{n\in\mathbb{N}}$ ist, wenn es zu jedem $\varepsilon > 0$ +ein $N$ gibt derart, dass $|a_n-a|<\varepsilon$ für $n>N$ ist. +Das Problem dieser wohlbekannten Definition für die Konstruktion +reeller Zahle ist, dass im Falle der Folge +\[ +(a_n)_{n\in\mathbb{N}}= +(1, +\frac75, +\frac{41}{29}, +\frac{239}{169},\dots) \to a=\sqrt{2} +\] +das Objekt $a$ noch gar nicht existiert. +Es gibt keine rationale Zahl, die als Grenzwert dieser Folge dienen +könnte. + +Folgen, die gegen Werte in $\mathbb{Q}$ konvergieren sind dagegen +nicht in der Lage, neue Zahlen zu approximieren. +Wir müssen also auszudrücken versuchen, dass eine Folge konvergiert, +ohne den zugehörigen Grenzwert zu kennen. + +\subsubsection{Cauchy-Folgen} Die Menge $\mathbb{R}$ der reellen Zahlen kann man auch als Menge -aller Cauchy-Folgen $(a_n)_{n\in\mathbb{N}}$ betrachten. +aller Cauchy-Folgen $(a_n)_{n\in\mathbb{N}}$, $a_n\in\mathbb{Q}$, +betrachten. +\index{Cauchy-Folge}% Eine Folge ist eine Cauchy-Folge, wenn es für jedes $\varepsilon>0$ eine Zahl $N(\varepsilon)$ gibt derart, dass $|a_n-a_m|<\varepsilon$ für $n,m>N(\varepsilon)$. Ab einer geeigneten Stelle $N(\varepsilon)$ sind die Folgenglieder also mit Genauigkeit $\varepsilon$ nicht mehr unterscheidbar. + +\subsubsection{Relle Zahlen als Äquivalenzklassen von Cauchy-Folgen} Nicht jede Cauchy-Folge hat eine rationale Zahl als Grenzwert. Da wir für solche Folgen noch keine Zahlen als Grenzwerte haben, nehmen wir die Folge als eine mögliche Darstellung der Zahl. @@ -61,13 +101,14 @@ b_n&\colon&& \] beide Folgen, die die Zahl $\sqrt{2}$ approximieren. Im Allgemeinen tritt dieser Fall ein, wenn $|a_n-b_n|$ eine -Folge mit Grenzwert $0$ oder Nullfolge ist. +Folge mit Grenzwert $0$ oder {\em Nullfolge} ist. +\index{Nullfolge}% Eine reelle Zahl ist also die Menge aller rationalen Cauchy-Folgen, deren Differenzen Nullfolgen sind. Die Menge $\mathbb{R}$ der reellen Zahlen kann man also ansehen -als bestehend aus Mengen von Folgen, die alle den gleichen Grenzwert -haben. +als bestehend aus Äquivalenzklassen von Folgen, die alle den gleichen +Grenzwert haben. Die Rechenregeln der Analysis \[ \lim_{n\to\infty} (a_n + b_n) |