aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/10-vektorenmatrizen/linear.tex
diff options
context:
space:
mode:
authorNunigan <michael.schmid2@ost.ch>2021-07-27 22:01:05 +0200
committerNunigan <michael.schmid2@ost.ch>2021-07-27 22:01:05 +0200
commit3875ac2b8df9145a66e9f6fcf34e77eb3bc2d072 (patch)
treeb5113260e190dfc7a94e4298bf6eb5ae21c08344 /buch/chapters/10-vektorenmatrizen/linear.tex
parentMerge pull request #50 from paschost/patch-1 (diff)
downloadSeminarMatrizen-3875ac2b8df9145a66e9f6fcf34e77eb3bc2d072.tar.gz
SeminarMatrizen-3875ac2b8df9145a66e9f6fcf34e77eb3bc2d072.zip
added first part of paper and code
Diffstat (limited to '')
-rwxr-xr-x[-rw-r--r--]buch/chapters/10-vektorenmatrizen/linear.tex91
1 files changed, 43 insertions, 48 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex
index e368364..3ad51f1 100644..100755
--- a/buch/chapters/10-vektorenmatrizen/linear.tex
+++ b/buch/chapters/10-vektorenmatrizen/linear.tex
@@ -33,7 +33,7 @@ aber mit Punkten kann man trotzdem noch nicht rechnen.
Ein Vektor fasst die Koordinaten eines Punktes in einem Objekt zusammen,
mit dem man auch rechnen und zum Beispiel Parallelverschiebungen
algebraisieren kann.
-Um auch Streckungen ausdrücken zu können, wird auch eine Menge von
+Um auch Streckungen ausdrücken zu können, wird auch eine Menge von
Streckungsfaktoren benötigt, mit denen alle Komponenten eines Vektors
multipliziert werden können.
Sie heissen auch {\em Skalare} und liegen in $\Bbbk$.
@@ -73,7 +73,7 @@ a+b
=
\begin{pmatrix}\lambda a_1\\\vdots\\\lambda a_n\end{pmatrix}.
\]
-Die üblichen Rechenregeln sind erfüllt, nämlich
+Die üblichen Rechenregeln sind erfüllt, nämlich
\begin{equation}
\begin{aligned}
&\text{Kommutativität:}
@@ -149,7 +149,7 @@ kann als (abstrakter) Vektor betrachtet werden.
\begin{definition}
Eine Menge $V$ von Objekten, auf der zwei Operationen definiert,
nämlich die Addition, geschrieben $a+b$ für $a,b\in V$ und die
-Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und
+Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und
$\lambda\in \Bbbk$, heisst ein {\em $\Bbbk$-Vektorraum} oder {\em Vektorraum
über $\Bbbk$} (oder
einfach nur {\em Vektorraum}, wenn $\Bbbk$ aus dem Kontext klar sind),
@@ -172,7 +172,7 @@ $\mathbb{C}$ ein Vektorraum über $\mathbb{R}$.
\end{beispiel}
\begin{beispiel}
-Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$
+Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$
bildet ein Vektorraum.
Funktionen können addiert und mit reellen Zahlen multipliziert werden:
\[
@@ -188,7 +188,7 @@ Die Vektorraum-Rechenregeln
\end{beispiel}
Die Beispiele zeigen, dass der Begriff des Vektorraums die algebraischen
-Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer
+Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer
Objekte beschreiben kann.
Alle Erkenntnisse, die man ausschliesslich aus Vekotorraumeigenschaften
gewonnen hat, sind auf alle diese Objekte übertragbar.
@@ -300,7 +300,7 @@ folgt, dass alle $\lambda_1,\dots,\lambda_n=0$ sind.
Lineare Abhängigkeit der Vektoren $a_1,\dots,a_n$ bedeutet auch, dass
man einzelne der Vektoren durch andere ausdrücken kann.
Hat man nämlich eine
-Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und
+Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und
ist der Koeffizient $\lambda_k\ne 0$, dann kann man nach $a_k$ auflösen:
\[
a_k = -\frac{1}{\lambda_k}(\lambda_1a_1+\dots+\widehat{\lambda_ka_k}+\dots+\lambda_na_n).
@@ -323,7 +323,7 @@ offenbar eine besondere Bedeutung.
Eine linear unabhängig Menge von Vektoren
$\mathcal{B}=\{a_1,\dots,a_n\}\subset V$
heisst {\em Basis} von $V$.
-Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst
+Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst
{\em Dimension} von $V$.
\end{definition}
@@ -331,7 +331,7 @@ Die Standardbasisvektoren bilden eine Basis von $V=\Bbbk^n$.
\subsubsection{Unterräume}
Die Mengen $\langle a_1,\dots,a_n\rangle$ sind Teilmengen
-von $V$, in denen die Addition von Vektoren und die Multiplikation mit
+von $V$, in denen die Addition von Vektoren und die Multiplikation mit
Skalaren immer noch möglich ist.
\begin{definition}
@@ -352,7 +352,7 @@ gilt.
%
\subsection{Matrizen
\label{buch:grundlagen:subsection:matrizen}}
-Die Koeffizienten eines linearen Gleichungssystems finden in einem
+Die Koeffizienten eines linearen Gleichungssystems finden in einem
Zeilen- oder Spaltenvektor nicht Platz.
Wir erweitern das Konzept daher in einer Art, dass Zeilen- und
Spaltenvektoren Spezialfälle sind.
@@ -378,14 +378,14 @@ M_{m\times n}(\Bbbk) = \{ A\;|\; \text{$A$ ist eine $m\times n$-Matrix}\}.
\]
Falls $m=n$ gilt, heisst die Matrix $A$ auch {\em quadratisch}
\index{quadratische Matrix}%
-Man kürzt die Menge der quadratischen Matrizen als
+Man kürzt die Menge der quadratischen Matrizen als
$M_n(\Bbbk) = M_{n\times n}(\Bbbk)$ ab.
\end{definition}
-Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen
+Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen
$v\in M_{n\times 1}(\Bbbk)$, die $n$-dimensionalen Zeilenvetoren $u\in\Bbbk^n$
sind $1\times n$-Matrizen $v\in M_{1\times n}(\Bbbk)$.
-Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus
+Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus
den $n$ Spaltenvektoren
\[
a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},\quad
@@ -435,7 +435,7 @@ werden kann.
\begin{definition}
Eine $m\times n$-Matrix $A\in M_{m\times n}(\Bbbk)$ und eine
$n\times l$-Matrix $B\in M_{n\times l}(\Bbbk)$ haben als Produkt
-eine $n\times l$-Matrix $C=AB\in M_{n\times l}(\Bbbk)$ mit den
+eine $m\times l$-Matrix $C=AB\in M_{m\times l}(\Bbbk)$ mit den
Koeffizienten
\begin{equation}
c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.
@@ -483,7 +483,7 @@ I
1 &0 &\dots &0 \\
0 &1 &\dots &0 \\[-2pt]
\vdots&\vdots&\ddots&\vdots\\
-0 &0 &\dots &1
+0 &0 &\dots &1
\end{pmatrix}.
\]
@@ -521,10 +521,10 @@ Ein Gleichungssystem mit $0$ auf der rechten Seite ist also bereits
ausreichend um zu entscheiden, ob die Lösung eindeutig ist.
Ein Gleichungssystem mit rechter Seite $0$ heisst {\em homogen}.
\index{homogenes Gleichungssystem}%
-Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$
+Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$
ist $Ax=0$ das zugehörige homogene Gleichungssystem.
-Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die
+Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die
Lösung $x=0$, man nennt sie auch die {\em triviale} Lösung.
Eine Lösung $x\ne 0$ heisst auch eine nichttriviale Lösung.
Die Lösungen eines inhomgenen Gleichungssystem $Ax=b$ ist also nur dann
@@ -535,7 +535,7 @@ Lösung hat.
Der Gauss-Algorithmus oder genauer Gausssche Eliminations-Algorithmus
löst ein lineare Gleichungssystem der
Form~\eqref{buch:vektoren-und-matrizen:eqn:vektorform}.
-Die Koeffizienten werden dazu in das Tableau
+Die Koeffizienten werden dazu in das Tableau
\[
\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|}
\hline
@@ -552,7 +552,7 @@ Der Algorithmus is so gestaltet, dass er nicht mehr Speicher als
das Tableau benötigt, alle Schritte operieren direkt auf den Daten
des Tableaus.
-In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und
+In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und
Spalte $j$ ausgewählt, das Elemente $a_{ij}$ heisst das Pivotelement.
\index{Pivotelement}%
Die {\em Pivotdivision}
@@ -646,7 +646,7 @@ In der Phase der {\em Vorwärtsreduktion} werden Pivotelemente von links
nach rechts möglichst auf der Diagonale gewählt und mit Zeilensubtraktionen
die darunterliegenden Spalten freigeräumt.
\index{Vorwärtsreduktion}%
-Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von
+Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von
rechts nach links genutzt, um mit Zeilensubtraktionen auch die
Spalten über den Pivotelemnten frei zu räumen.
\index{Rückwärtseinsetzen}%
@@ -800,7 +800,7 @@ $x = b_1c_1+b_2c_2+\dots+b_nc_n$ konstruieren.
Tatsächlich gilt
\begin{align*}
Ax
-&=
+&=
A( b_1c_1+b_2c_2+\dots+b_nc_n)
\\
&=
@@ -851,10 +851,10 @@ für eine Gleichungssystem mit quadratischer Koeffizientenmatrix $A$
heisst die Determinante $\det(A)$ der Matrix $A$.
\end{definition}
-Aus den Regeln für die Durchführung des Gauss-Algorithmus kann man die
+Aus den Regeln für die Durchführung des Gauss-Algorithmus kann man die
folgenden Regeln für die Determinante ableiten.
Wir stellen die Eigenschaften hier nur zusammen, detaillierte Herleitungen
-kann man in jedem Kurs zur linearen Algebra finden, zum Beispiel im
+kann man in jedem Kurs zur linearen Algebra finden, zum Beispiel im
Kapitel~2 des Skripts \cite{buch:linalg}.
\begin{enumerate}
\item
@@ -877,11 +877,11 @@ wird auch der Wert der Determinanten mit $\lambda$ multipliziert.
\item
\label{buch:linear:determinante:asymetrisch}
Die Determinante ist eine lineare Funktion der Zeilen von $A$.
-Zusammen mit der Eigeschaft~\ref{buch:linear:determinante:vorzeichen}
+Zusammen mit der Eigeschaft~\ref{buch:linear:determinante:vorzeichen}
folgt, dass die Determinante eine antisymmetrische lineare Funktion
der Zeilen ist.
\item
-Die Determinante ist durch die Eigenschaften
+Die Determinante ist durch die Eigenschaften
\ref{buch:linear:determinante:einheitsmatrix}
und
\ref{buch:linear:determinante:asymetrisch}
@@ -895,7 +895,7 @@ Die Determinante der $n\times n$-Matrix $A$ kann mit der Formel
=
\sum_{i=1}^n (-1)^{i+j} a_{ij} \cdot \det(A_{ij})
\end{equation}
-wobei die $(n-1)\times(n-1)$-Matrix $A_{ij}$ die Matrix $A$ ist, aus der
+wobei die $(n-1)\times(n-1)$-Matrix $A_{ij}$ die Matrix $A$ ist, aus der
man Zeile $i$ und Spalte $j$ entfernt hat.
$A_{ij}$ heisst ein {\em Minor} der Matrix $A$.
\index{Minor einer Matrix}%
@@ -949,7 +949,7 @@ der rechten Seiten ersetzt worden ist.
\end{satz}
Die Cramersche Formel ist besonders nützlich, wenn die Abhängigkeit
-einer Lösungsvariablen von den Einträgen der Koeffizientenmatrix
+einer Lösungsvariablen von den Einträgen der Koeffizientenmatrix
untersucht werden soll.
Für die Details der Herleitung sei wieder auf \cite{buch:linalg}
verwiesen.
@@ -993,7 +993,7 @@ heisst die {\em Adjunkte} $\operatorname{adj}A$ von $A$.
\end{satz}
Der Satz~\ref{buch:linalg:inverse:adjoint} liefert eine algebraische
-Formel für die Elemente der inversen Matrix.
+Formel für die Elemente der inversen Matrix.
Für kleine Matrizen wie im nachfolgenden Beispiel ist die
Formel~\eqref{buch:linalg:inverse:formel} oft einfachter anzuwenden.
Besonders einfach wird die Formel für eine $2\times 2$-Matrix,
@@ -1035,7 +1035,7 @@ Die Adjunkte ist
\begin{pmatrix*}[r]
\det A_{11} & -\det A_{21} & \det A_{31} \\
-\det A_{12} & \det A_{22} & -\det A_{32} \\
- \det A_{13} & -\det A_{23} & \det A_{33}
+ \det A_{13} & -\det A_{23} & \det A_{33}
\end{pmatrix*}
\intertext{und damit ist die inverse Matrix}
A^{-1}
@@ -1084,7 +1084,7 @@ A^{-1}
\end{pmatrix}.
\label{buch:vektoren-und-matrizen:abeispiel:eqn2}
\end{equation}
-für die Inverse einer Matrix der Form
+für die Inverse einer Matrix der Form
\eqref{buch:vektoren-und-matrizen:abeispiel:eqn1}.
\end{beispiel}
@@ -1118,7 +1118,7 @@ Eine Abbildung $f\colon V\to U$ zwischen Vektorräumen $V$ und $U$
heisst linear, wenn
\[
\begin{aligned}
-f(v+w) &= f(v) + f(w)&&\forall v,w\in V
+f(v+w) &= f(v) + f(w)&&\forall v,w\in V
\\
f(\lambda v) &= \lambda f(v) &&\forall v\in V,\lambda \in \Bbbk
\end{aligned}
@@ -1129,16 +1129,16 @@ gilt.
Lineare Abbildungen sind in der Mathematik sehr verbreitet.
\begin{beispiel}
-Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen
+Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen
auf dem Intervall $[a,b]$ und $U=C([a,b])$ die Menge der
-stetigen Funktion aif $[a,b]$.
+stetigen Funktion aif $[a,b]$.
Die Ableitung $\frac{d}{dx}$ macht aus einer Funktion $f(x)$ die
Ableitung $f'(x)$.
-Die Rechenregeln für die Ableitung stellen sicher, dass
+Die Rechenregeln für die Ableitung stellen sicher, dass
\[
\frac{d}{dx}
\colon
-C^1([a,b]) \to C([a,b])
+C^1([a,b]) \to C([a,b])
:
f \mapsto f'
\]
@@ -1157,7 +1157,7 @@ eine lineare Abbildung.
\end{beispiel}
\subsubsection{Matrix}
-Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung
+Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung
mit Hilfe von Matrizen nötig.
Sei also $\mathcal{B}=\{b_1,\dots,b_n\}$ eine Basis von $V$ und
$\mathcal{C} = \{ c_1,\dots,c_m\}$ eine Basis von $U$.
@@ -1165,12 +1165,12 @@ Das Bild des Basisvektors $b_i$ kann als Linearkombination der
Vektoren $c_1,\dots,c_m$ dargestellt werden.
Wir verwenden die Bezeichnung
\[
-f(b_i)
+f(b_i)
=
a_{1i} c_1 + \dots + a_{mi} c_m.
\]
Die lineare Abbildung $f$ bildet den Vektor $x$ mit Koordinaten
-$x_1,\dots,x_n$ ab auf
+$x_1,\dots,x_n$ ab auf
\begin{align*}
f(x)
&=
@@ -1193,7 +1193,7 @@ x_n(a_{1n} c_1 + \dots + a_{mn} c_m)
+
( a_{m1} x_1 + \dots + a_{mn} x_n ) c_m
\end{align*}
-Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind
+Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind
also gegeben durch das Matrizenprodukt $Ax$, wenn $x$ der Spaltenvektor
aus den Koordinaten in der Basis $\mathcal{B}$ in $V$ ist.
@@ -1231,7 +1231,7 @@ b_{m1}x_1&+& \dots &+&b_{mn}x_n&=&b_{m1}'x_1'&+& \dots &+&b_{mn}'x_n'
\end{linsys}
\]
Dieses Gleichungssystem kann man mit Hilfe eines Gauss-Tableaus lösen.
-Wir schreiben die zugehörigen Variablen
+Wir schreiben die zugehörigen Variablen
\[
\renewcommand{\arraystretch}{1.1}
\begin{tabular}{|>{$}c<{$} >{$}c<{$} >{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
@@ -1277,7 +1277,7 @@ Für zwei Vektoren $u$ und $w$ in $U$ gibt es daher Vektoren $a=g(u)$
und $b=g(w)$ in $V$ derart, dass $f(a)=u$ und $f(b)=w$.
Weil $f$ linear ist, folgt daraus $f(a+b)=u+w$ und $f(\lambda a)=\lambda a$
für jedes $\lambda\in\Bbbk$.
-Damit kann man jetzt
+Damit kann man jetzt
\begin{align*}
g(u+w)&=g(f(a)+f(b)) = g(f(a+b)) = a+b = g(u)+g(w)
\\
@@ -1315,7 +1315,7 @@ Der Kern oder Nullraum der Matrix $A$ ist die Menge
\]
\end{definition}
-Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$
+Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$
\[
\begin{aligned}
f(u+v)&=f(u) + f(v) = 0+0 = 0 &&\Rightarrow& u+v&\in\ker f\\
@@ -1331,7 +1331,7 @@ Wir definieren daher das Bild einer linearen Abbildung oder Matrix.
\begin{definition}
Ist $f\colon V\to U$ eine lineare Abbildung dann ist das Bild von $f$
-der Unterraum
+der Unterraum
\[
\operatorname{im}f = \{ f(v)\;|\;v\in V\} \subset U
\]
@@ -1375,7 +1375,7 @@ $\operatorname{def}A=\dim\ker A$.
\end{definition}
Da der Kern mit Hilfe des Gauss-Algorithmus bestimmt werden kann,
-können Rang und Defekt aus dem Schlusstableau
+können Rang und Defekt aus dem Schlusstableau
eines homogenen Gleichungssystems mit $A$ als Koeffizientenmatrix
abgelesen werden.
@@ -1391,8 +1391,3 @@ n-\operatorname{def}A.
\subsubsection{Quotient}
TODO: $\operatorname{im} A \simeq \Bbbk^m/\ker A$
-
-
-
-
-