diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-02-22 11:05:33 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-02-22 11:05:33 +0100 |
commit | 4bff73541cd54fc393beff67ab867e095d023e9d (patch) | |
tree | 723a92f755e029711e4433f9b2a0f89c29d53308 /buch/chapters/30-endlichekoerper/galois.tex | |
parent | slides (diff) | |
parent | Merge remote-tracking branch 'origin/master' (diff) | |
download | SeminarMatrizen-4bff73541cd54fc393beff67ab867e095d023e9d.tar.gz SeminarMatrizen-4bff73541cd54fc393beff67ab867e095d023e9d.zip |
Merge branch 'master' of github.com:AndreasFMueller/SeminarMatrizen
Diffstat (limited to 'buch/chapters/30-endlichekoerper/galois.tex')
-rw-r--r-- | buch/chapters/30-endlichekoerper/galois.tex | 9 |
1 files changed, 5 insertions, 4 deletions
diff --git a/buch/chapters/30-endlichekoerper/galois.tex b/buch/chapters/30-endlichekoerper/galois.tex index 055a4f9..fbacba6 100644 --- a/buch/chapters/30-endlichekoerper/galois.tex +++ b/buch/chapters/30-endlichekoerper/galois.tex @@ -3,6 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TeX spellcheck = de_CH \section{Galois-Körper \label{buch:section:galoiskoerper}} \rhead{Galois-Körper} @@ -257,11 +258,11 @@ alle diese möglichen Auftrennungen zu verschiedenen Perlenketten führen. Zwei Trennstellen, die $k$-Perlen auseinander liegen, führen nur dann zur gleichen Perlenkette, wenn die geschlossenen Ketten durch Drehung -um $k$ Perlen ineinander umgehen. +um $k$ Perlen ineinander übergehen. Dies bedeutet aber auch, dass sich das Farbmuster alle $k$-Perlen wiederholen muss. Folglich ist $k$ ein Teiler von $p$. -$p$ Verschiedene Perlenketten entstehen also immer genau dann, wenn $p$ +$p$ verschiedene Perlenketten entstehen also immer genau dann, wenn $p$ eine Primzahl ist. Wir schliessen daraus, dass $a^p-a$ durch $p$ teilbar ist, genau dann, @@ -485,7 +486,7 @@ Wir wissen aus Satz \ref{buch:endliche-koerper:satz:binom}, dass Wir müssen zeigen, dass $(a+b)^{p^k}=a^{p^k}+b^{p^k}$ gilt. Wir verwenden vollständige Induktion, \eqref{buch:endliche-koerper:eqn:a+b^p} ist die Induktionsverankerung. -Wir nehmen jetzt im Sinne der Induktionsannahme, dass +Wir nehmen jetzt im Sinne der Induktionsannahme an, dass \eqref{buch:endliche-koerper:eqn:a+b^p^k} für ein bestimmtes $k$ gilt. Dann ist \[ @@ -517,7 +518,7 @@ In $\mathbb{F}_p$ gilt \[ \binom{p^k}{m}=0 \] -für beliebige $k>0$ und $0<m<p$. +für beliebige $k>0$ und $0<m<p^k$. \end{satz} \subsubsection{Frobenius-Automorphismus} |