aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte/uebungsaufgaben
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-06-14 07:26:10 +0200
committerGitHub <noreply@github.com>2021-06-14 07:26:10 +0200
commit114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch)
tree18e61c7d69883a1c9b69098b7d36856abaed5c1e /buch/chapters/40-eigenwerte/uebungsaufgaben
parentDelete buch.pdf (diff)
parentFix references.bib (diff)
downloadSeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz
SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip
Merge branch 'master' into master
Diffstat (limited to '')
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex12
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex30
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex72
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex151
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima121
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex97
6 files changed, 462 insertions, 21 deletions
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex
index 2fab61a..dd82067 100644
--- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex
@@ -2,7 +2,7 @@ Verwenden Sie die Matrixdarstellung komplexer Zahlen, um $i^i$ zu
berechnen.
\begin{hinweis}
-Verwenden Sie die eulersche Formel um $\log J$ zu bestimmen.
+Verwenden Sie die Eulersche Formel um $\log J$ zu bestimmen.
\end{hinweis}
\begin{loesung}
@@ -14,11 +14,11 @@ Zunächst erinnern wir an die Eulersche Formel
=
\sum_{k=0}^\infty \frac{t^k J^k}{k!}
=
-\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot E
+\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot I
+
\sum_{i=0}^\infty \frac{t^{2i+1}(-1)^i}{(2i+1)!}\cdot J
=
-\cos t\cdot E
+\cos t\cdot I
+
\sin t\cdot J.
\]
@@ -49,7 +49,7 @@ J = \begin{pmatrix}
Als nächstes müssen wir $J\log J$ berechnen.
Aus \eqref{4001:logvalue} folgt
\[
-J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot E.
+J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot I.
\]
Darauf ist die Exponentialreihe auszuwerten, also
\[
@@ -57,7 +57,7 @@ J^J
=
\exp (J\log J)
=
-\exp(-\frac{\pi}2 E)
+\exp(-\frac{\pi}2 I)
=
\exp
\begin{pmatrix}
@@ -70,7 +70,7 @@ e^{-\frac{\pi}2}&0\\
0&e^{-\frac{\pi}2}
\end{pmatrix}
=
-e^{-\frac{\pi}2} E.
+e^{-\frac{\pi}2} I.
\]
Als komplexe Zahlen ausgedrückt folgt also $i^i = e^{-\frac{\pi}2}$.
\end{loesung}
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex
index 3cd9959..b749356 100644
--- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex
@@ -78,11 +78,11 @@ Ab_1 =
3b_1
\]
ab.
-Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-eE)$
+Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-2I)$
bestimmen.
-Die vierte Potenz von $A-2E$ ist
+Die vierte Potenz von $A-2I$ ist
\begin{equation}
-(A-2E)^4
+(A-2I)^4
=
\begin{pmatrix}
0& 0& 0& 0\\
@@ -108,13 +108,13 @@ b_4
=
\begin{pmatrix}0\\0\\1\\2\end{pmatrix}
\]
-für den Kern $\mathcal{K}(A-2E)$ ablesen.
-Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2E)
-= \mathcal{J}(A-3E)$ sein.
-Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2E$
+für den Kern $\mathcal{K}(A-2I)$ ablesen.
+Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2I)
+= \mathcal{J}(A-3I)$ sein.
+Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2I$
berechnen, sie ist
\[
-(A-2E)^4
+(A-2I)^4
=
\begin{pmatrix}
79& -26& 152& -152\\
@@ -124,7 +124,7 @@ berechnen, sie ist
\end{pmatrix}.
\]
Die Spaltenvektoren lassen sich alle durch die Vektoren $b_2$, $b_3$
-und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2E)=\langle b_2,b_3,b_4\rangle$.
+und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2I)=\langle b_2,b_3,b_4\rangle$.
Indem die Vektoren $b_i$ als Spalten in eine Matrix $T$ schreibt, kann man
jetzt berechnen, wie die Matrix der linearen Abbildung in dieser neuen
@@ -154,16 +154,16 @@ A_1
\end{pmatrix}
\]
in der rechten unteren Ecke hat den dreifachen Eigenwert $2$,
-und die Potenzen von $A_1-2E$ sind
+und die Potenzen von $A_1-2I$ sind
\[
-A_1-2E
+A_1-2I
\begin{pmatrix}
-15 & 5& 29\\
-27 & 9& 51\\
-3 & 1& 6
\end{pmatrix}
,\qquad
-(A_1-2E)^2
+(A_1-2I)^2
=
\begin{pmatrix}
3 & -1 & -6\\
@@ -171,10 +171,10 @@ A_1-2E
0 & 0 & 0\\
\end{pmatrix}
,\qquad
-(A_1-2E)^3=0.
+(A_1-2I)^3=0.
\]
Für die Jordan-Normalform brauchen wir einen von $0$ verschiedenen
-Vektor im Kern von $(A_1-2E)^2$, zum Beispiel den Vektor mit den
+Vektor im Kern von $(A_1-2I)^2$, zum Beispiel den Vektor mit den
Komponenten $1,3,1$.
Man beachte aber, dass diese Komponenten jetzt in der neuen Basis
$b_2,\dots,b_4$ zu verstehen sind, d.~h.~der Vektor, den wir suchen, ist
@@ -185,7 +185,7 @@ b_1+ 3b_2+b_3
=
\begin{pmatrix}1\\3\\1\\2\end{pmatrix}.
\]
-Jetzt berechnen wir die Bilder von $c_3$ unter $A-2E$:
+Jetzt berechnen wir die Bilder von $c_3$ unter $A-2I$:
\[
c_2
=
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex
new file mode 100644
index 0000000..5940b46
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4004.tex
@@ -0,0 +1,72 @@
+Berechnen Sie $\sin At$ für die Matrix
+\[
+A=\begin{pmatrix}
+\omega& 1 \\
+ 0 &\omega
+\end{pmatrix}.
+\]
+Kontrollieren Sie Ihr Resultat, indem Sie den Fall $\omega = 0$ gesondert
+ausrechnen.
+\begin{hinweis}
+Schreiben Sie $A=\omega I + N$ mit einer nilpotenten Matrix.
+\end{hinweis}
+
+\begin{loesung}
+Man muss $At$ in die Potenzreihe
+\[
+\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots
+\]
+für die Sinus-Funktion einsetzen.
+Mit der Schreibweise $A=\omega I + N$, wobei $N^2=0$ können die Potenzen etwas
+leichter berechnet werden:
+\begin{align*}
+A^0 &= I
+\\
+A^1 &= \omega I + N
+\\
+A^2 &= \omega^2 I + 2\omega N
+\\
+A^3 &= \omega^3 I + 3\omega^2 N
+\\
+A^4 &= \omega^4 I + 4\omega^3 N
+\\
+&\phantom{a}\vdots
+\\
+A^k &= \omega^k I + k\omega^{k-1} N
+\end{align*}
+Damit kann man jetzt $\sin At$ berechnen:
+\begin{align}
+\sin At
+&=
+At - \frac{A^3t^3}{3!} + \frac{A^5t^5}{5!} - \frac{A^7t^7}{7!}
+\dots
+\notag
+\\
+&=
+\biggl(
+\omega t - \frac{\omega^3t^3}{3!} + \frac{\omega^5t^5}{5!} - \frac{\omega^7t^7}{7!}
++\dots
+\biggr)I
++
+\biggl(
+t -\frac{3\omega^2t^3}{3!} + \frac{5\omega^4t^5}{5!} - \frac{7\omega^6t^7}{7!}+\dots
+\biggr)N
+\notag
+\\
+&=
+I\sin\omega t
++tN\biggl(1-\frac{\omega^2t^2}{2!} +\frac{\omega^4t^4}{4!}
+- \frac{\omega^6t^6}{6!}
++\dots\biggr)
+\notag
+\\
+&=I\sin\omega t + tN\cos\omega t.
+\label{4004:resultat}
+\end{align}
+Im Fall $\omega=0$ ist $A=N$ und $A^2=0$, so dass
+\[
+\sin At = tN,
+\]
+dies stimmt mit \eqref{4004:resultat} für $\omega=0$ überein, da
+$\cos\omega t = \cos 0=1$ in diesem Fall.
+\end{loesung}
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
new file mode 100644
index 0000000..ec76c34
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
@@ -0,0 +1,151 @@
+Rechnen Sie nach, dass die Matrix
+\[
+A
+=
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+\]
+normal ist.
+\begin{teilaufgaben}
+\item
+Berechnen Sie die Eigenwerte, indem Sie das charakteristische Polynom
+von $A$ und seine Nullstellen bestimmen.
+\item
+Das Polynom
+\[
+p(z,\overline{z})
+=
+\frac{(3-\sqrt{3})z\overline{z}-9(1-\sqrt{3})}{6}
+\]
+hat die Eigenschaft, dass
+\begin{align*}
+p(\lambda,\lambda) &= |\lambda|
+\end{align*}
+für alle drei Eigenwerte von $A$.
+Verwenden Sie dieses Polynom, um $B=|A|$ zu berechen.
+\item
+Überprüfen Sie Ihr Resultat, indem Sie mit einem Computeralgebra-Programm
+die Eigenwerte von $B$ bestimmen.
+\end{teilaufgaben}
+
+\begin{loesung}
+Die Matrix $A$ ist von der Form $2I+O$ mit $O\in\operatorname{SO}(3)$,
+für solche Matrizen wurde gezeigt, dass sie normal sind.
+Man kann aber auch direkt nachrechnen:
+\begin{align*}
+AA^t
+&=
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+\begin{pmatrix}
+2&0&1\\
+1&2&0\\
+0&1&2
+\end{pmatrix}
+=
+\begin{pmatrix}
+5&2&2\\
+2&5&2\\
+2&2&5
+\end{pmatrix}
+\\
+A^tA
+&=
+\begin{pmatrix}
+2&0&1\\
+1&2&0\\
+0&1&2
+\end{pmatrix}
+\begin{pmatrix}
+2&1&0\\
+0&2&1\\
+1&0&2
+\end{pmatrix}
+=
+\begin{pmatrix}
+5&2&2\\
+2&5&2\\
+2&2&5
+\end{pmatrix}
+\end{align*}
+Es gilt also $AA^t=A^tA$, die Matrix ist also normal.
+\begin{teilaufgaben}
+\item Das charakteristische Polynom ist
+\begin{align}
+\chi_A(\lambda)
+&=\left|
+\begin{matrix}
+2-\lambda & 1 & 0  \\
+ 0 & 2-\lambda & 1 \\
+ 1 & 0 & 2-\lambda
+\end{matrix}
+\right|
+=
+(2-\lambda)^3+1
+\label{4005:charpoly}
+\\
+&=-\lambda^3 -6\lambda^2 + 12\lambda +9.
+\notag
+\end{align}
+Mit einem Taschenrechner kann man die Nullstellen finden,
+aber man kann das auch die Form \eqref{4005:charpoly}
+des charakteristischen Polynoms direkt faktorisieren:
+\begin{align*}
+\chi_A(\lambda)
+&=
+(2-\lambda)^3+1
+\\
+&=
+((2-\lambda)+1)
+((2-\lambda)^2 -(2-\lambda)+1)
+\\
+&=
+(3-\lambda)
+(\lambda^2-3\lambda +4-2+\lambda +1)
+\\
+&=
+(3-\lambda)
+(\lambda^2-2\lambda +3)
+\end{align*}
+Daraus kann man bereits einen Eigenwert $\lambda=3$ ablesen,
+die weiteren Eigenwerte sind die Nullstellen des zweiten Faktors, die
+man mit der Lösungsformel für quadratische Gleichungen finden kann:
+\begin{align*}
+\lambda_{\pm}
+&=
+\frac{3\pm\sqrt{9-12}}{2}
+=
+\frac{3}{2} \pm\frac{\sqrt{-3}}{2}
+=
+\frac{3}{2} \pm i\frac{\sqrt{3}}{2}
+\end{align*}
+\item
+Wir müssen $z=A$ und $\overline{z}=A^t$ im Polynom $p(z,\overline{z})$
+substituieren und erhalten
+\begin{align*}
+B
+&=
+\frac{3-\sqrt{3}}6 \begin{pmatrix}5&2&2\\2&5&2\\2&2&5\end{pmatrix}
++\frac{\sqrt{3}-1}{2}I
+\\
+&=
+\begin{pmatrix}
+ 2.1547005& 0.42264973& 0.42264973 \\
+ 0.4226497& 2.15470053& 0.42264973 \\
+ 0.4226497& 0.42264973& 2.15470053
+\end{pmatrix}
+\end{align*}
+\item
+Tatsächlich gibt die Berechnung der Eigenwerte
+den einfachen Eigenwert $\mu_0=3=|\lambda_0|$
+und
+den doppelten Eigenwert $\mu_{\pm} = \sqrt{3}=1.7320508=|\lambda_{\pm}|$.
+\qedhere
+\end{teilaufgaben}
+\end{loesung}
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima
new file mode 100644
index 0000000..9c97a2b
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima
@@ -0,0 +1,121 @@
+/*
+ * 4006.maxima
+ *
+ * (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+ */
+
+A: matrix([ a+b*%i, 1, 0, 0 ],
+ [ 0, a+b*%i, 0, 0 ],
+ [ 0, 0, a-b*%i, 1 ],
+ [ 0, 0, 0, a-b*%i ]);
+
+expand(charpoly(A, x));
+
+S: (1/sqrt(2)) * matrix([ 1, -%i, 0, 0 ],
+ [ 0, 0, 1, -%i ],
+ [ 1, %i, 0, 0 ],
+ [ 0, 0, 1, %i ]);
+
+B: expand(invert(S).A.S);
+
+
+C: subst(2, a, B);
+C: subst(3, b, C);
+A: subst(2, a, A);
+A: subst(3, b, A);
+
+U: matrix([ 1, 0, 1, 0 ],
+ [ 0, 1, 1, 2 ],
+ [ 0, 0, 1, 0 ],
+ [ 0, 0, 0, 1 ]);
+V: matrix([ 1, 0, 0, 0 ],
+ [ 0, 1, 0, 0 ],
+ [ 0, 1, 1, 0 ],
+ [ 1, 0, 0, 1 ]);
+T: U.V;
+invert(T);
+
+D: T.C.invert(T);
+
+p: expand(charpoly(D, x));
+
+factor(p);
+
+lambda: 2+3*%i;
+
+Dlambda: ratsimp(expand(D - lambda * identfor(D)));
+rank(Dlambda);
+/* D2: expand(Dlambda.Dlambda); */
+/* rank(D2); */
+
+load(functs);
+
+/*
+E: Dlambda;
+E[1]: (rational(1/E[1,1]))*E[1]$
+E[2]: E[2] - E[2,1] * E[1]$
+E[3]: E[3] - E[3,1] * E[1]$
+E[4]: E[4] - E[4,1] * E[1]$
+E: ratsimp(E)$
+
+E[2]: (rational(1/E[2,2])) * E[2]$
+E[3]: E[3] - E[3,2] * E[2]$
+E[4]: E[4] - E[4,2] * E[2]$
+E: ratsimp(E)$
+
+E[3]: (rational(1/E[3,3])) * E[3]$
+E[4]: E[4] - E[4,3] * E[3]$
+E: ratsimp(E)$
+
+E[2]: E[2] - E[2,3] * E[3]$
+E[1]: E[1] - E[1,3] * E[3]$
+E: ratsimp(E)$
+
+E[1]: E[1] - E[1,2] * E[2]$
+E: ratsimp(E)$
+
+E;
+*/
+
+b1: matrix([1+%i],[2+2*%i],[%i],[1]);
+ratsimp(D.b1 - lambda*b1);
+
+G: Dlambda;
+G: addcol(G, b1);
+G[1]: (rational(1/G[1,1]))*G[1]$
+G[2]: G[2] - G[2,1] * G[1]$
+G[3]: G[3] - G[3,1] * G[1]$
+G[4]: G[4] - G[4,1] * G[1]$
+G: ratsimp(G)$
+
+G[2]: (rational(1/G[2,2])) * G[2]$
+G[3]: G[3] - G[3,2] * G[2]$
+G[4]: G[4] - G[4,2] * G[2]$
+G: ratsimp(G)$
+
+G[3]: (rational(1/G[3,3])) * G[3]$
+G[4]: G[4] - G[4,3] * G[3]$
+G: ratsimp(G)$
+
+G[2]: G[2] - G[2,3] * G[3]$
+G[1]: G[1] - G[1,3] * G[3]$
+G: ratsimp(G)$
+
+G[1]: G[1] - G[1,2] * G[2]$
+G: ratsimp(G)$
+
+G;
+
+b2: matrix([ G[1,5] ], [ G[2,5] ], [ G[3,5] ], [ G[4,5] ]);
+
+expand(D.b2 - lambda * b2 - b1);
+
+c1: 2 * realpart(b1);
+d1: 2 * imagpart(b1);
+c2: 2 * realpart(b2);
+d2: 2 * imagpart(b2);
+
+D.c1 - 2 * c1 + 3 * d1;
+D.d1 - 3 * c1 - 2 * d1;
+D.c2 - 2 * c2 + 3 * d2 - c1;
+D.d2 - 3 * c2 - 2 * d2 - d1;
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex
new file mode 100644
index 0000000..7ccc065
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex
@@ -0,0 +1,97 @@
+Man findet eine Basis, in der die Matrix
+\[
+A=\begin{pmatrix*}[r]
+ -5& 2& 6& 0\\
+-11& 12& -3& -15\\
+ -7& 0& 9& 4\\
+ 0& 5& -7& -8
+\end{pmatrix*}
+\]
+die relle Normalform bekommt.
+
+\begin{loesung}
+Das charakteristische Polynom der Matrix ist
+\[
+\chi_{A}(\lambda)
+=
+\lambda^4-8\lambda^3+42\lambda^2-104\lambda+169
+=
+(\lambda^2-4\lambda+13)^2.
+\]
+Es hat die doppelten Nullstellen
+\[
+\lambda_\pm
+=
+2\pm \sqrt{4-13}
+=
+2\pm \sqrt{-9}
+=
+2\pm 3i.
+\]
+Zur Bestimmung der Basis muss man jetzt zunächst den Kern von
+$A_+=A-\lambda_+I$ bestimmen, zum Beispiel mit Hilfe des Gauss-Algorithmus,
+man findet
+\[
+b_1
+=
+\begin{pmatrix}
+1+i\\
+2+2i\\
+i\\
+1
+\end{pmatrix}.
+\]
+Als nächstes braucht man einen Vektor $b_1\in \ker A_+^2$, der
+$b_1$ auf $b_1+\lambda_+b_2$ abbildet.
+Durch Lösen des Gleichungssystems $Ab_2-\lambda_+ b_2=b_1$ findet man
+\[
+b_2
+=
+\begin{pmatrix}
+2-i\\3\\2\\0
+\end{pmatrix}
+\qquad\text{und damit weiter}\qquad
+\overline{b}_1
+=
+\begin{pmatrix}
+1-i\\
+2-2i\\
+-i\\
+1
+\end{pmatrix},\quad
+\overline{b}_2
+=
+\begin{pmatrix}
+2+i\\3\\2\\0
+\end{pmatrix}.
+\]
+Als Basis für die reelle Normalform von $A$ kann man jetzt die Vektoren
+\begin{align*}
+c_1
+&=
+b_1+\overline{b}_1 = \begin{pmatrix}2\\4\\0\\2\end{pmatrix},&
+d_1
+&=
+\frac{1}{i}(b_1-\overline{b}_1) = \begin{pmatrix}2\\4\\2\\0\end{pmatrix},&
+c_2
+&=
+b_2+\overline{b}_2 = \begin{pmatrix}4\\6\\4\\0\end{pmatrix},&
+d_2
+&=
+\frac{1}{i}(b_2-\overline{b}_2) = \begin{pmatrix}-2\\0\\0\\0\end{pmatrix}
+\end{align*}
+verwenden.
+In dieser Basis hat $A$ die Matrix
+\[
+A'
+=
+\begin{pmatrix*}[r]
+ 2& 3& 1& 0\\
+-3& 2& 0& 1\\
+ 0& 0& 2& 3\\
+ 0& 0&-3& 2
+\end{pmatrix*},
+\]
+wie man einfach nachrechnen kann.
+\end{loesung}
+