aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte
diff options
context:
space:
mode:
authorLukaszogg <82384106+Lukaszogg@users.noreply.github.com>2021-09-11 09:37:10 +0200
committerLukaszogg <82384106+Lukaszogg@users.noreply.github.com>2021-09-11 09:37:10 +0200
commitafbb1ff480ce5b57826b01806c2abd79230fc58b (patch)
treedcf6e53d43aec69c022e0beff6662a1ec0445f7d /buch/chapters/40-eigenwerte
parentÄnderungen vom Nachmittag (diff)
parentadd combined images (diff)
downloadSeminarMatrizen-afbb1ff480ce5b57826b01806c2abd79230fc58b.tar.gz
SeminarMatrizen-afbb1ff480ce5b57826b01806c2abd79230fc58b.zip
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r--buch/chapters/40-eigenwerte/eigenwerte.tex2
-rw-r--r--buch/chapters/40-eigenwerte/grundlagen.tex4
2 files changed, 3 insertions, 3 deletions
diff --git a/buch/chapters/40-eigenwerte/eigenwerte.tex b/buch/chapters/40-eigenwerte/eigenwerte.tex
index 563b58a..1af91f8 100644
--- a/buch/chapters/40-eigenwerte/eigenwerte.tex
+++ b/buch/chapters/40-eigenwerte/eigenwerte.tex
@@ -19,7 +19,7 @@ Eigenschaften der Matrix $A$ abzuleiten.
\label{buch:eigenwerte:def:spektrum}
Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum {\em Eigenwert}
\index{Eigenwert}%
-\index{Eigenvekor}%
+\index{Eigenvektor}%
$\lambda\in\Bbbk$, wenn $v\ne 0$ und $Av=\lambda v$ gilt.
Die Menge
\[
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex
index 91294f1..b41da1d 100644
--- a/buch/chapters/40-eigenwerte/grundlagen.tex
+++ b/buch/chapters/40-eigenwerte/grundlagen.tex
@@ -27,7 +27,7 @@ bereits eine Normalform für nilpotente Matrizen.
\caption{Iterierte Kerne und Bilder einer $3\times 3$-Matrix mit Rang~2.
Die abnehmend geschachtelten iterierten Bilder
$\mathcal{J}^1(A) \subset \mathcal{J}^2(A)$
-sind links dargestellt, die zunehmen geschachtelten iterierten Kerne
+sind links dargestellt, die zunehmend geschachtelten iterierten Kerne
$\mathcal{K}^1(A) \subset \mathcal{K}^2(A)$ rechts.
\label{buch:eigenwerte:img:kernbild}}
\end{figure}
@@ -387,7 +387,7 @@ $A^k=0$.
\begin{beispiel}
Obere (oder untere) Dreiecksmatrizen mit Nullen auf der Diagonalen
sind nilpotent.
-\index{Dreicksmatrix}%
+\index{Dreiecksmatrix}%
Wir rechnen dies wie folgt nach.
Die Matrix $A$ mit Einträgen $a_{i\!j}$
\[