diff options
author | Lukaszogg <82384106+Lukaszogg@users.noreply.github.com> | 2021-09-11 09:37:10 +0200 |
---|---|---|
committer | Lukaszogg <82384106+Lukaszogg@users.noreply.github.com> | 2021-09-11 09:37:10 +0200 |
commit | afbb1ff480ce5b57826b01806c2abd79230fc58b (patch) | |
tree | dcf6e53d43aec69c022e0beff6662a1ec0445f7d /buch/chapters/40-eigenwerte | |
parent | Änderungen vom Nachmittag (diff) | |
parent | add combined images (diff) | |
download | SeminarMatrizen-afbb1ff480ce5b57826b01806c2abd79230fc58b.tar.gz SeminarMatrizen-afbb1ff480ce5b57826b01806c2abd79230fc58b.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/40-eigenwerte/eigenwerte.tex | 2 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/grundlagen.tex | 4 |
2 files changed, 3 insertions, 3 deletions
diff --git a/buch/chapters/40-eigenwerte/eigenwerte.tex b/buch/chapters/40-eigenwerte/eigenwerte.tex index 563b58a..1af91f8 100644 --- a/buch/chapters/40-eigenwerte/eigenwerte.tex +++ b/buch/chapters/40-eigenwerte/eigenwerte.tex @@ -19,7 +19,7 @@ Eigenschaften der Matrix $A$ abzuleiten. \label{buch:eigenwerte:def:spektrum} Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum {\em Eigenwert} \index{Eigenwert}% -\index{Eigenvekor}% +\index{Eigenvektor}% $\lambda\in\Bbbk$, wenn $v\ne 0$ und $Av=\lambda v$ gilt. Die Menge \[ diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex index 91294f1..b41da1d 100644 --- a/buch/chapters/40-eigenwerte/grundlagen.tex +++ b/buch/chapters/40-eigenwerte/grundlagen.tex @@ -27,7 +27,7 @@ bereits eine Normalform für nilpotente Matrizen. \caption{Iterierte Kerne und Bilder einer $3\times 3$-Matrix mit Rang~2. Die abnehmend geschachtelten iterierten Bilder $\mathcal{J}^1(A) \subset \mathcal{J}^2(A)$ -sind links dargestellt, die zunehmen geschachtelten iterierten Kerne +sind links dargestellt, die zunehmend geschachtelten iterierten Kerne $\mathcal{K}^1(A) \subset \mathcal{K}^2(A)$ rechts. \label{buch:eigenwerte:img:kernbild}} \end{figure} @@ -387,7 +387,7 @@ $A^k=0$. \begin{beispiel} Obere (oder untere) Dreiecksmatrizen mit Nullen auf der Diagonalen sind nilpotent. -\index{Dreicksmatrix}% +\index{Dreiecksmatrix}% Wir rechnen dies wie folgt nach. Die Matrix $A$ mit Einträgen $a_{i\!j}$ \[ |