diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-04-01 13:33:00 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-04-01 13:33:00 +0200 |
commit | f62357e61d1a1cb647bc5e208946ac5be018bd85 (patch) | |
tree | e51b95071397351f7403f6165a4304f5b3056cc3 /buch/chapters/40-eigenwerte | |
parent | Tippfehler korrigiert (mit Dank für den Hinweis an L. Zogg) (diff) | |
download | SeminarMatrizen-f62357e61d1a1cb647bc5e208946ac5be018bd85.tar.gz SeminarMatrizen-f62357e61d1a1cb647bc5e208946ac5be018bd85.zip |
add missing files
Diffstat (limited to '')
16 files changed, 1194 insertions, 30 deletions
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex index ffc452b..69618a9 100644 --- a/buch/chapters/40-eigenwerte/grundlagen.tex +++ b/buch/chapters/40-eigenwerte/grundlagen.tex @@ -213,6 +213,24 @@ Somit können sich $\mathcal{K}^i(A)$ und $\mathcal{J}^i(A)$ für $i>n$ nicht mehr ändern. \end{proof} +\begin{figure} +\centering +\includegraphics{chapters/40-eigenwerte/images/dimjk.pdf} +\caption{Entwicklung der Dimension von $\dim\mathcal{K}^k(A)$ (grün) +und $\dim\mathcal{J}^k(A)$ (orange) in Abhängigkeit vom Exponenten $k$. +Für $k\ge l$ ändern sich die Dimensionen nicht mehr, $A$ eingeschränkt +auf $\mathcal{J}^l(A)=\mathcal{J}(A)$ ist injektiv. +\label{buch:eigenwerte:fig:dimjk}} +\end{figure} + +Abbildung~\ref{buch:eigenwerte:fig:dimjk} zeigt die Abhängigkeit der +Dimensionen $\dim\mathcal{K}^k(A)$ und $\dim\mathcal{J}^k(A)$ von $k$. +Die Dimension $\dim\mathcal{J}^k(A)$ nimmt ab bis zu $k=l$, danach ändert +sie sich nicht mehr und die Einschränkung von $A$ auf $\mathcal{J}^l(A)$ +ist injektiv. +Die Dimension $\dim\mathcal{K}^k(A)$ nimmt zu bis zu $k=l$, danach +ändert sie sich nicht mehr. + \begin{definition} \label{buch:eigenwerte:def:KundJ} Die gemäss Satz~\ref{buch:eigenwerte:satz:ketten} identischen Unterräume @@ -228,6 +246,7 @@ $\mathcal{J}^i(A)$ für $i\ge k$ werden mit bezeichnet. \end{definition} + % % Inveriante Unterräume % @@ -399,6 +418,7 @@ Mit vollständiger Induktion folgt, dass $a_{ij}^s=0$ für $i+s>j$. Insbesondere ist $A^n=0$, die Matrix $A$ ist nilpotent. \end{beispiel} + Man kann die Konstruktion der Unterräume $\mathcal{K}^i(A)$ weiter dazu verwenden, eine Basis zu finden, in der eine nilpotente Matrix eine besonders einfach Form erhält. @@ -487,6 +507,178 @@ Nach Satz~\ref{buch:eigenwerte:satz:allgnilpotent} kann man in $\mathcal{K}(A)$ eine Basis so wählen, dass die Matrix die Blockform \eqref{buch:eigenwerte:eqn:allgnilpotent} erhält. + + +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/jknilp.pdf} +\caption{Entwicklung der Dimensionen von Kern und Bild von $A^k$ in +Abhängigkeit von $k$ +\label{buch:eigenwte:fig:jknilp}} +\end{figure} + +\begin{beispiel} +In der Abbildung~\ref{buch:eigenwte:fig:jknilp} sind die Dimensionen +von Kern und Bild der Matrix +\[ +\setcounter{MaxMatrixCols}{12} +A=\begin{pmatrix} +0& & & & & & & & & & & \\ + &0& & & & & & & & & & \\ + & &0& & & & & & & & & \\ + & & &0& & & & & & & & \\ + & & & &0&1& & & & & & \\ + & & & & &0& & & & & & \\ + & & & & & &0&1& & & & \\ + & & & & & & &0&1& & & \\ + & & & & & & & &0&1& & \\ + & & & & & & & & &0&1& \\ + & & & & & & & & & &0& +\end{pmatrix} +\] +dargestellt. +Die Matrix $A^k$ ist in den kleinen Quadraten am unteren Rand der Matrix +symbolisch dargestellt. +Grüne Spalten bestehen aus lauter Nullen, die zugehörigen +Standardbasisvektoren werden von diesem $A^k$ auf $0$ abgebildet. +Die orangen Felder enthalten Einsen, die entsprechenden Standardbasisvektoren +bilden daher eine Basis des Bildes von $A^k$. +\end{beispiel} + +% +% Basis für die Jordan-Normalform einer nilpotenten Matrix +% +\subsection{Basis für die Normalform einer nilpotenten Matrix bestimmen +\label{buch:subsection:normalform-einer-nilpotenten-matrix}} +Die Zerlegung in die invarianten Unterräume $\mathcal{J}^k(f)$ und +$\mathcal{K}^k(f)$ ermöglichen, eine Basis zu finden, in der die +Matrix von $f$ die Blockform \eqref{buch:eigenwerte:eqn:allgnilpotent} +hat. +In diesem Abschnitt soll die Konstruktion einer solchen Basis +etwas ausführlicher beschrieben werden. + +\begin{figure} +\centering +\includegraphics{chapters/40-eigenwerte/images/normalform.pdf} +\caption{Konstruktion der Basis für die Jordansche Normalform einer +nilpotenten Matrix. +Die Vektoren werden in der Reihenfolge von rechts nach links in die +Matrix gefüllt. +\label{buch:eigenwerte:fig:normalform}} +\end{figure} + +Abbildung~\ref{buch:eigenwerte:fig:normalform} illustriert den Prozess +an einer nilpotenten Matrix $A$ mit $A^3=0$ +Die vertikalen Rechtecke im linken Teil der Abbildung symbolisieren +die Unterräume $\mathcal{K}^k(A)$. +Es ist bekannt, dass $\mathcal{K}^k(A) \subset \mathcal{K}^{k+1}(A)$ ist, +die Einbettung wird in der Abbildung durch graue Rechtecke dargestellt. +Es sei wieder $l$ der Exponent, für den $\mathcal{K}^l(A)=\Bbbk^n$ wird. +Da $\mathcal{K}^{l-1}(A)\ne \mathcal{K}^l(A)$ ist, muss es einen +komplementären Unterraum geben, in dem eine Basis gewählt wird. +Jeder der Vektoren $b_1,\dots,b_s$ dieser Basis gibt Anlass zu einem +Block der Form $N_l$, der auf dem Unterraum +$\langle b_i,Ab_i,\dots,A^{l-1}b_i\rangle$ operiert. +In der Abbildung ist $b_i$ durch einen roten Punkt symbolisiert und +die Bilder $Ab_i,\dots,A^{l-1}b_i$ werden durch blaue Pfeile untereinander +verbunden. + +Der Raum $\mathcal{K}^{l-1}(A)$ enthält dann $\mathcal{K}^{l-2}(A)$ und +die Vektoren $Ab_1,\dots,Ab_s$. +Es ist aber möglich, dass diese Vektoren nicht den ganzen Raum +$\mathcal{K}^{l-1}(A)$ erzeugen. +In diesem Fall lassen sich die Vektoren mit Hilfe weiterer Vektoren +$b_{s+1},\dots,b_{s+r}$ zu einer Basisi von $\mathcal{K}^{l-1}(A)$ +ergänzen. +Wie vorhin gibt jeder der Vektoren $b_{s+i}$ Anlass zu einem Block +der Form $N_{l-1}$, der auf dem Unterraum +$\langle b_{s+i},Ab_{s+i}\dots,A^{l-2}b_{s+i}\rangle$ +operiert. + +Durch Wiederholung dieses Prozesses können schrittweise Basisvektoren +$b_i$ erzeugt werden. +Die Matrix der Abbildung $f$ in der Basis $\{b_i,Ab_i,\dots,A^kb_i\}$ +ist ein Block der Form $N_k$. +Für $0\le k\le l-1$ sind die Vektoren $A^kb_i$, +solange sie von $0$ verschieden sind, +alle nach Konstruktion linear unabhängig, sie bilden eine Basis +von $\mathcal{K}^l(A)=\mathbb{R}^n$. + +\begin{beispiel} +Die Basis für die Zerlegung der Matrix +\[ +A += +\begin{pmatrix*}[r] + 3& 1&-2\\ +-21&-7&14\\ + -6&-2& 4 +\end{pmatrix*} +\] +in Blockform soll nach der oben beschriebenen Methode ermittelt werden. +Zunächst kann man nachrechnen, dass $A^2=0$ ist. +Der Kern von $A$ ist der Lösungsraum der Gleichung $Ax=0$, da alle Zeilen +Vielfache der ersten Zeile sind, recht es zu verlangen, dass die +Komponenten $x_i$ der Lösung die Gleichung +\[ +3x_1+x_2-2x_3=0 +\] +erfüllen. +Jetzt muss ein Vektor $b_1$ ausserhalb von $\mathbb{L}$ gefunden werden, +der erste Standardbasisvektor $e_1$ kann dazu verwendet werden. +Es ist auch klar, dass $Ae_1\ne 0$ ist. +Wir verwenden daher die beiden Vektoren +\[ +b_3=e_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix} +,\qquad +b_2=Ab_3=\begin{pmatrix*}[r] 3\\-21\\-6 \end{pmatrix*}, +\] +in dieser Basis hat $A$ die Matrix $N_2$. +Jetzt muss noch ein Basisvektor $b_1$ gefunden werden, +der in $\ker A=\mathbb{L}$ liegt und so, dass $b_1$ und $b_2$ +linear unabhängig sind. +Die zweite Bedingung kann leicht dadurch sichergestellt werden, +dass man die erste Komponente von $b_1$ als $0$ wählt. +Eine mögliche Lösung ist dann +\[ +b_1=\begin{pmatrix}0\\2\\1\end{pmatrix} +\] +Die Matrix +\[ +B=\begin{pmatrix*}[r] + 0& 1& 3\\ + 2& 0& -21\\ + 1& 0& -6 +\end{pmatrix*} +\qquad\text{mit Inverser} +\qquad +B^{-1}=\begin{pmatrix*}[r] +0&-\frac23& \frac73\\ +0&-\frac19& \frac29\\ +1& \frac13&-\frac23 +\end{pmatrix*} +\] +transformiert die Matrix $A$ auf den Block $N_3$: +\[ +B^{-1}AB += +B^{-1}\begin{pmatrix*}[r] +0&0& 3\\ +0&0&-21\\ +0&0& -6 +\end{pmatrix*} += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} += +N_3. +\qedhere +\] +\end{beispiel} + % % Begriff des Eigenwertes und Eigenvektors % diff --git a/buch/chapters/40-eigenwerte/images/Makefile b/buch/chapters/40-eigenwerte/images/Makefile index 753153d..bec12d5 100644 --- a/buch/chapters/40-eigenwerte/images/Makefile +++ b/buch/chapters/40-eigenwerte/images/Makefile @@ -3,7 +3,9 @@ # # (c) 2020 Prof Dr Andreas Müller, Hochschule Rappersil # -all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf +all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf \ + wurzelapprox.pdf wurzel.pdf dimjk.pdf jknilp.pdf \ + normalform.pdf sp.pdf: sp.tex sppaths.tex pdflatex sp.tex @@ -19,3 +21,22 @@ kernbild.pdf: kernbild.tex bild2.jpg kern2.jpg kombiniert.pdf: kombiniert.tex kombiniert.jpg pdflatex kombiniert.tex + +wurzelapprox.pdf: wurzelapprox.tex wa.tex + pdflatex wurzelapprox.tex + +wa.tex: wa.m + octave wa.m + +wurzel.pdf: wurzel.tex + pdflatex wurzel.tex + +dimjk.pdf: dimjk.tex + pdflatex dimjk.tex + +jknilp.pdf: jknilp.tex + pdflatex jknilp.tex + +normalform.pdf: normalform.tex + pdflatex normalform.tex + diff --git a/buch/chapters/40-eigenwerte/images/dimjk.pdf b/buch/chapters/40-eigenwerte/images/dimjk.pdf Binary files differnew file mode 100644 index 0000000..fcfe4da --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/dimjk.pdf diff --git a/buch/chapters/40-eigenwerte/images/dimjk.tex b/buch/chapters/40-eigenwerte/images/dimjk.tex new file mode 100644 index 0000000..28e0f9f --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/dimjk.tex @@ -0,0 +1,78 @@ +% +% dimjk.tex -- dimensionen von K^l und J^l +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1.2} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\pfad{ + ({0*\sx},{6-6}) -- + ({1*\sx},{6-4.5}) -- + ({2*\sx},{6-3.5}) -- + ({3*\sx},{6-2.9}) -- + ({4*\sx},{6-2.6}) -- + ({5*\sx},{6-2.4}) -- + ({8*\sx},{6-2.4}) +} +\def\sx{1.2} + +\fill[color=orange!20] \pfad -- ({6*\sx},6) -- (0,6) -- cycle; +\fill[color=darkgreen!20] \pfad -- ({6*\sx},0) -- cycle; + +\fill[color=orange!40] ({5*\sx},6) rectangle ({8*\sx},{6-2.4}); +\fill[color=darkgreen!40] ({5*\sx},0) rectangle ({8*\sx},{6-2.4}); + +\draw[color=darkgreen,line width=2pt] ({3*\sx},{6-6}) -- ({3*\sx},{6-2.9}); +\node[color=darkgreen] at ({3*\sx},{6-4.45}) [rotate=90,above] {$\dim\mathcal{K}^k(A)$}; +\draw[color=orange,line width=2pt] ({3*\sx},{6-0}) -- ({3*\sx},{6-2.9}); +\node[color=orange] at ({3*\sx},{6-1.45}) [rotate=90,above] {$\dim\mathcal{J}^k(A)$}; + +\node[color=orange] at ({6.5*\sx},{6-1.2}) {bijektiv}; +\node[color=darkgreen] at ({6.5*\sx},{6-4.2}) {konstant}; + +\fill ({0*\sx},{6-6}) circle[radius=0.08]; +\fill ({1*\sx},{6-4.5}) circle[radius=0.08]; +\fill ({2*\sx},{6-3.5}) circle[radius=0.08]; +\fill ({3*\sx},{6-2.9}) circle[radius=0.08]; +\fill ({4*\sx},{6-2.6}) circle[radius=0.08]; +\fill ({5*\sx},{6-2.4}) circle[radius=0.08]; +\fill ({6*\sx},{6-2.4}) circle[radius=0.08]; +\fill ({7*\sx},{6-2.4}) circle[radius=0.08]; +\fill ({8*\sx},{6-2.4}) circle[radius=0.08]; + +\draw \pfad; + +\draw[->] (-0.5,0) -- ({8*\sx+0.5},0) coordinate[label={$k$}]; +\draw[->] (-0.5,6) -- ({8*\sx+0.5},6); + +\foreach \x in {0,...,8}{ + \draw ({\x*\sx},-0.05) -- ({\x*\sx},0.05); +} +\foreach \x in {0,...,3}{ + \node at ({\x*\sx},-0.05) [below] {$\x$}; +} +\node at ({4*\sx},-0.05) [below] {$\dots\mathstrut$}; +\node at ({5*\sx},-0.05) [below] {$l$}; +\node at ({6*\sx},-0.05) [below] {$l+1$}; +\node at ({7*\sx},-0.05) [below] {$l+2$}; +\node at ({8*\sx},-0.05) [below] {$l+3$}; + +\node[color=orange] at ({1.2*\sx},5.6) + {$\mathcal{J}^k(A)\supset\mathcal{J}^{k+1}(A)$}; +\node[color=darkgreen] at ({1.2*\sx},0.4) + {$\mathcal{K}^k(A)\subset\mathcal{K}^{k+1}(A)$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/40-eigenwerte/images/jknilp.pdf b/buch/chapters/40-eigenwerte/images/jknilp.pdf Binary files differnew file mode 100644 index 0000000..9293263 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/jknilp.pdf diff --git a/buch/chapters/40-eigenwerte/images/jknilp.tex b/buch/chapters/40-eigenwerte/images/jknilp.tex new file mode 100644 index 0000000..e8e8e14 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/jknilp.tex @@ -0,0 +1,181 @@ +% +% jknilp.tex -- Dimensionen von K^l und J^l für nilpotente Matrizen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\s{0.15} +\def\punkt#1#2{({#1*\s},{#2*\s})} + +\def\vektor#1{ + \fill[color=darkgreen!30] \punkt{#1}{0} rectangle \punkt{(#1+1)}{12}; +} +\def\feld#1#2{ + \fill[color=orange!60] ({#1*\s},{(12-#2)*\s}) rectangle + ({(#1+1)*\s},{(11-#2)*\s}); +} + +\def\quadrat#1{ + \draw \punkt{0}{0} rectangle \punkt{12}{12}; + + \draw \punkt{0}{11} -- \punkt{2}{11} -- \punkt{2}{9} -- \punkt{4}{9} + -- \punkt{4}{6} -- \punkt{12}{6}; + + \draw \punkt{1}{12} -- \punkt{1}{10} -- \punkt{3}{10} + -- \punkt{3}{8} -- \punkt{6}{8} -- \punkt{6}{0}; + \node at ({6*\s},0) [below] {#1\strut}; +} + +\begin{scope}[xshift=-0.9cm,yshift=-3cm] +\foreach \n in {0,...,11}{ + \feld{\n}{\n} +} +\quadrat{$A^0=I$} +\end{scope} + +\begin{scope}[xshift=1.1cm,yshift=-3cm] +\vektor{0} +\vektor{1} +\vektor{2} +\vektor{3} +\vektor{4} +\vektor{6} +\feld{5}{4} +\feld{7}{6} +\feld{8}{7} +\feld{9}{8} +\feld{10}{9} +\feld{11}{10} +\quadrat{$A$} +\end{scope} + +\begin{scope}[xshift=3.1cm,yshift=-3cm] +\vektor{0} +\vektor{1} +\vektor{2} +\vektor{3} +\vektor{4} +\vektor{5} +\vektor{6} +\vektor{7} +\feld{8}{6} +\feld{9}{7} +\feld{10}{8} +\feld{11}{9} +\quadrat{$A^2$} +\end{scope} + +\begin{scope}[xshift=5.1cm,yshift=-3cm] +\vektor{0} +\vektor{1} +\vektor{2} +\vektor{3} +\vektor{4} +\vektor{5} +\vektor{6} +\vektor{7} +\vektor{8} +\feld{9}{6} +\feld{10}{7} +\feld{11}{8} +\quadrat{$A^3$} +\end{scope} + +\begin{scope}[xshift=7.1cm,yshift=-3cm] +\vektor{0} +\vektor{1} +\vektor{2} +\vektor{3} +\vektor{4} +\vektor{5} +\vektor{6} +\vektor{7} +\vektor{8} +\vektor{9} +\feld{10}{6} +\feld{11}{7} +\quadrat{$A^4$} +\end{scope} + +\begin{scope}[xshift=9.1cm,yshift=-3cm] +\vektor{0} +\vektor{1} +\vektor{2} +\vektor{3} +\vektor{4} +\vektor{5} +\vektor{6} +\vektor{7} +\vektor{8} +\vektor{9} +\vektor{10} +\feld{11}{6} +\quadrat{$A^5$} +\end{scope} + +\begin{scope}[xshift=11.1cm,yshift=-3cm] +\vektor{0} +\vektor{1} +\vektor{2} +\vektor{3} +\vektor{4} +\vektor{5} +\vektor{6} +\vektor{7} +\vektor{8} +\vektor{9} +\vektor{10} +\vektor{11} +\quadrat{$A^6$} +\end{scope} + +\def\pfad{ + (0,0) -- (2,3) -- (4,4) -- (6,4.5) -- (8,5) -- (10,5.5) -- (12,6) +} + + +\fill[color=orange!20] \pfad -- (-1,6) -- (-1,0) -- cycle; +\fill[color=darkgreen!20] \pfad -- (13,6) -- (13,0) -- cycle; +\draw[line width=1.3pt] \pfad; + +\fill (0,0) circle[radius=0.08]; +\fill (2,3) circle[radius=0.08]; +\fill (4,4) circle[radius=0.08]; +\fill (6,4.5) circle[radius=0.08]; +\fill (8,5) circle[radius=0.08]; +\fill (10,5.5) circle[radius=0.08]; +\fill (12,6) circle[radius=0.08]; + +\foreach \y in {0.5,1,...,5.5}{ + \draw[line width=0.3pt] (-1.1,\y) -- (13.0,\y); +} +\foreach \y in {0,2,4,...,12}{ + \node at (-1.1,{\y*0.5}) [left] {$\y$}; +} +\foreach \x in {0,...,6}{ + \draw ({2*\x},0) -- ({2*\x},-1.2); + \node at ({2*\x},-0.6) [above,rotate=90] {$k=\x$}; +} + +\draw[->] (-1.1,0) -- (13.4,0) coordinate[label={$k$}]; +\draw[->] (-1.1,6) -- (13.4,6); +\draw[->] (-1.0,0) -- (-1.0,6.5); + +\node[color=darkgreen] at (8,1.95) [above] {$\dim \mathcal{K}^k(A)$}; +\node[color=orange] at (2,4.95) [above] {$\dim \mathcal{J}^k(A)$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/40-eigenwerte/images/normalform.pdf b/buch/chapters/40-eigenwerte/images/normalform.pdf Binary files differnew file mode 100644 index 0000000..c5bdb61 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/normalform.pdf diff --git a/buch/chapters/40-eigenwerte/images/normalform.tex b/buch/chapters/40-eigenwerte/images/normalform.tex new file mode 100644 index 0000000..f3cb532 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/normalform.tex @@ -0,0 +1,214 @@ +% +% normalform.tex -- Normalform einer Matrix ermitteln +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\b{0.025} + +\def\s{2.5} +\def\t{0.7} +\def\T{0.5} + +\fill[color=darkgreen!20] + ({-3*\s-0.5*\t},{8*\t}) + -- + ({-3*\s+0.5*\t},{8*\t}) + -- + ({-2*\s-0.5*\t},{7*\t}) + -- + ({-2*\s+0.5*\t},{7*\t}) + -- + ({-1*\s-0.5*\t},{4*\t}) + -- + ({-1*\s+0.5*\t},{4*\t}) + -- + ({-0.5*\t},0) + -- + ({-3*\s-0.5*\t},{0*\t}) + -- cycle; + + +\fill[color=white,rounded corners=3pt] + ({-0.5*\t-\b},{-\b}) rectangle ({0.5*\t+\b},{\b+0.15}); +\draw[rounded corners=3pt] + ({-0.5*\t-\b},{-\b}) rectangle ({0.5*\t+\b},{\b+0.15}); +\node at (0,0) [below] {$\mathcal{K}^0(A)$}; + +\fill[color=white,rounded corners=3pt] + ({-1*\s-0.5*\t-\b},{-\b}) rectangle ({-1*\s+0.5*\t+\b},{4*\t+\b}); +\draw[rounded corners=3pt] + ({-1*\s-0.5*\t-\b},{-\b}) rectangle ({-1*\s+0.5*\t+\b},{4*\t+\b}); +\fill[color=blue!20,rounded corners=2pt] + ({-1*\s-0.5*\t+\b},{1*\t+\b}) rectangle ({-1*\s+0.5*\t-\b},{3*\t-\b}); +\draw[color=blue!40,rounded corners=2pt] + ({-1*\s-0.5*\t+\b},{1*\t+\b}) rectangle ({-1*\s+0.5*\t-\b},{3*\t-\b}); +\fill[color=blue!20,rounded corners=2pt] + ({-1*\s-0.5*\t+\b},{3*\t+\b}) rectangle ({-1*\s+0.5*\t-\b},{4*\t-\b}); +\draw[color=blue!40,rounded corners=2pt] + ({-1*\s-0.5*\t+\b},{3*\t+\b}) rectangle ({-1*\s+0.5*\t-\b},{4*\t-\b}); +\fill[color=red!20,rounded corners=2pt] + ({-1*\s-0.5*\t+\b},{\b}) rectangle ({-1*\s+0.5*\t-\b},{1*\t-\b}); +\draw[color=red,rounded corners=2pt] + ({-1*\s-0.5*\t+\b},{\b}) rectangle ({-1*\s+0.5*\t-\b},{1*\t-\b}); +\fill[color=red] ({-1*\s},{0.5*\t}) circle[radius=0.1]; +\fill[color=red,opacity=0.5] ({-1*\s},{1.5*\t}) circle[radius=0.1]; +\fill[color=red,opacity=0.5] ({-1*\s},{2.5*\t}) circle[radius=0.1]; +\fill[color=red,opacity=0.5] ({-1*\s},{3.5*\t}) circle[radius=0.1]; +\node at ({-1*\s},0) [below] {$\mathcal{K}^1(A)$}; + +\fill[color=white,rounded corners=3pt] + ({-2*\s-0.5*\t-\b},{-\b}) rectangle ({-2*\s+0.5*\t+\b},{7*\t+\b}); +\draw[rounded corners=3pt] + ({-2*\s-0.5*\t-\b},{-\b}) rectangle ({-2*\s+0.5*\t+\b},{7*\t+\b}); +\fill[color=gray!20,rounded corners=2pt] + ({-2*\s-0.5*\t+\b},{+\b}) rectangle ({-2*\s+0.5*\t-\b},{4*\t-\b}); +\draw[color=gray,rounded corners=2pt] + ({-2*\s-0.5*\t+\b},{+\b}) rectangle ({-2*\s+0.5*\t-\b},{4*\t-\b}); +\node[color=black!70] at ({-2*\s},{2*\t}) [rotate=90] {$\mathcal{K}^1(A)$}; +\fill[color=red!20,rounded corners=2pt] + ({-2*\s-0.5*\t+\b},{4*\t+\b}) rectangle ({-2*\s+0.5*\t-\b},{6*\t-\b}); +\draw[color=red,rounded corners=2pt] + ({-2*\s-0.5*\t+\b},{4*\t+\b}) rectangle ({-2*\s+0.5*\t-\b},{6*\t-\b}); +\fill[color=blue!20,rounded corners=2pt] + ({-2*\s-0.5*\t+\b},{6*\t+\b}) rectangle ({-2*\s+0.5*\t-\b},{7*\t-\b}); +\draw[color=blue!40,rounded corners=2pt] + ({-2*\s-0.5*\t+\b},{6*\t+\b}) rectangle ({-2*\s+0.5*\t-\b},{7*\t-\b}); +\fill[color=red] ({-2*\s},{4.5*\t}) circle[radius=0.1]; +\fill[color=red] ({-2*\s},{5.5*\t}) circle[radius=0.1]; +\fill[color=red,opacity=0.5] ({-2*\s},{6.5*\t}) circle[radius=0.1]; +\draw[->,color=blue,line width=1.2pt,shorten >= 0.15cm,shorten <= 0.15cm] + ({-2*\s},{6.5*\t}) -- ({-1*\s},{3.5*\t}); +\draw[->,color=blue,line width=1.2pt,shorten >= 0.15cm,shorten <= 0.15cm] + ({-2*\s},{5.5*\t}) -- ({-1*\s},{2.5*\t}); +\draw[->,color=blue,line width=1.2pt,shorten >= 0.15cm,shorten <= 0.15cm] + ({-2*\s},{4.5*\t}) -- ({-1*\s},{1.5*\t}); +\node at ({-2*\s},0) [below] {$\mathcal{K}^2(A)$}; + +\fill[color=white,rounded corners=3pt] + ({-3*\s-0.5*\t-\b},{-\b}) rectangle ({-3*\s+0.5*\t+\b},{8*\t+\b}); +\draw[rounded corners=3pt] + ({-3*\s-0.5*\t-\b},{-\b}) rectangle ({-3*\s+0.5*\t+\b},{8*\t+\b}); +\fill[color=gray!20,rounded corners=2pt] + ({-3*\s-0.5*\t+\b},{+\b}) rectangle ({-3*\s+0.5*\t-\b},{7*\t-\b}); +\draw[color=gray,rounded corners=2pt] + ({-3*\s-0.5*\t+\b},{+\b}) rectangle ({-3*\s+0.5*\t-\b},{7*\t-\b}); +\node[color=black!70] at ({-3*\s},{3.5*\t}) [rotate=90] {$\mathcal{K}^2(A)$}; +\fill[color=red!20,rounded corners=2pt] + ({-3*\s-0.5*\t+\b},{7*\t+\b}) rectangle ({-3*\s+0.5*\t-\b},{8*\t-\b}); +\draw[color=red,rounded corners=2pt] + ({-3*\s-0.5*\t+\b},{7*\t+\b}) rectangle ({-3*\s+0.5*\t-\b},{8*\t-\b}); +\fill[color=red] ({-3*\s},{7.5*\t}) circle[radius=0.1]; +\draw[->,color=blue,line width=1.2pt,shorten >= 0.15cm,shorten <= 0.15cm] + ({-3*\s},{7.5*\t}) -- ({-2*\s},{6.5*\t}); +\node at ({-3*\s},0) [below] {$\mathcal{K}^3(A)$}; + +\def\xo{1} +\def\yo{-1} + +\def\punkt#1#2{ + ({\xo+(#1)*\T},{\yo-(#2)*\T}) +} + +\fill[color=red!20] \punkt{0}{0} rectangle \punkt{1}{8}; +\fill[color=red!20] \punkt{2}{0} rectangle \punkt{3}{8}; +\fill[color=red!20] \punkt{4}{0} rectangle \punkt{5}{8}; +\fill[color=red!20] \punkt{7}{0} rectangle \punkt{8}{8}; + +\fill[color=blue!20] \punkt{2}{1} rectangle \punkt{3}{2}; +\fill[color=blue!20] \punkt{4}{3} rectangle \punkt{5}{4}; +\fill[color=blue!20] \punkt{6}{5} rectangle \punkt{7}{6}; +\fill[color=blue!20] \punkt{7}{6} rectangle \punkt{8}{7}; + +\draw \punkt{0}{0} rectangle \punkt{8}{8}; + +\draw[color=gray] \punkt{0}{1} -- \punkt{3}{1} -- \punkt{3}{5} -- \punkt{8}{5}; +\draw[color=gray] \punkt{1}{0} -- \punkt{1}{3} -- \punkt{5}{3} -- \punkt{5}{8}; + +\draw[->,color=red] + ({-3*\s+0.5*\t+\b},{7.5*\t}) + -- + ({0*\s+0.5*\t},{7.5*\t}) + to[out=0,in=90] + ({\xo+7.5*\T},{\yo}); + +\draw[->,color=blue] + ({-2*\s+0.5*\t+\b},{6.5*\t}) + -- + ({0*\s+0.5*\t},{6.5*\t}) + to[out=0,in=90] + ({\xo+6.5*\T},{\yo}); + +\draw[->,color=blue] + ({-1*\s+0.5*\t+\b},{3.5*\t}) + -- + ({0*\s+0.5*\t},{3.5*\t}) + to[out=0,in=90] + ({\xo+5.5*\T},{\yo}); + +\draw[->,color=red] + ({-2*\s+0.5*\t+\b},{5.5*\t}) + -- + ({0*\s+0.5*\t},{5.5*\t}) + to[out=0,in=90] + ({\xo+4.5*\T},{\yo}); + +\draw[->,color=red] + ({-2*\s+0.5*\t+\b},{4.5*\t}) + -- + ({0*\s+0.5*\t},{4.5*\t}) + to[out=0,in=90] + ({\xo+2.5*\T},{\yo}); + +\draw[->,color=blue] + ({-1*\s+0.5*\t+\b},{2.5*\t}) + -- + ({0*\s+0.5*\t},{2.5*\t}) + to[out=0,in=90] + ({\xo+3.5*\T},{\yo}); + +\draw[->,color=red] + ({-1*\s+0.5*\t+\b},{0.5*\t}) + -- + ({0*\s+0.5*\t},{0.5*\t}) + to[out=0,in=90] + ({\xo+0.5*\T},{\yo}); + +\draw[->,color=blue] + ({-1*\s+0.5*\t+\b},{1.5*\t}) + -- + ({0*\s+0.5*\t},{1.5*\t}) + to[out=0,in=90] + ({\xo+1.5*\T},{\yo}); + +\node at \punkt{0.5}{0.5} {$0$}; +\node at \punkt{1.5}{1.5} {$0$}; +\node at \punkt{2.5}{2.5} {$0$}; +\node at \punkt{3.5}{3.5} {$0$}; +\node at \punkt{4.5}{4.5} {$0$}; +\node at \punkt{5.5}{5.5} {$0$}; +\node at \punkt{6.5}{6.5} {$0$}; +\node at \punkt{7.5}{7.5} {$0$}; + +\node[color=blue] at \punkt{2.5}{1.5} {$1$}; +\node[color=blue] at \punkt{4.5}{3.5} {$1$}; +\node[color=blue] at \punkt{6.5}{5.5} {$1$}; +\node[color=blue] at \punkt{7.5}{6.5} {$1$}; + +\node at \punkt{-0.5}{4} [left] {$A=$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/40-eigenwerte/images/wa.m b/buch/chapters/40-eigenwerte/images/wa.m new file mode 100644 index 0000000..3d6d2c3 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/wa.m @@ -0,0 +1,80 @@ +# +# wa.m -- Wurzelapproximation +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +global u; +global N; +global t; +global s; + +N = 100; +n = 10; +s = 1; + +u = zeros(N + 2, n); +t = (0:N+1)' / N; +t = t.^2; + +for i = (2:n) + u(:,i) = u(:,i-1) + 0.5 * (t-u(:,i-1).^2); +end + +u + +global f; +f = fopen("wa.tex", "w"); +fprintf(f, "%%\n"); +fprintf(f, "%% Approximation der Wurzelfunktion\n"); +fprintf(f, "%%\n"); + +function pfad(i, name) + global f; + global u; + global t; + global N; + fprintf(f, "\\def\\pfad%s{\n", name); + fprintf(f, "(%.4f,%.4f)\n", t(1,1), u(1,i)); + for j = (2:N+1) + fprintf(f, "--(%.4f,%.4f)\n", t(j,1), u(j,i)); + end + fprintf(f, "}\n"); +end + +pfad( 1, "a") +pfad( 2, "b") +pfad( 3, "c") +pfad( 4, "d") +pfad( 5, "e") +pfad( 6, "f") +pfad( 7, "g") +pfad( 8, "h") +pfad( 9, "i") +pfad(10, "j") + +function fehler(i, name) + global f; + global u; + global t; + global N; + global s; + fprintf(f, "\\def\\fehler%s{\n", name); + fprintf(f, "(%.4f,%.4f)\n", t(1,1), s*(sqrt(t(1,1))-u(1,i))); + for j = (2:N+2) + fprintf(f, "--(%.4f,%.4f)\n", t(j,1), s*(sqrt(t(j,1))-u(j,i))); + end + fprintf(f, "}\n"); +end + +fehler( 1, "a") +fehler( 2, "b") +fehler( 3, "c") +fehler( 4, "d") +fehler( 5, "e") +fehler( 6, "f") +fehler( 7, "g") +fehler( 8, "h") +fehler( 9, "i") +fehler(10, "j") + +fclose(f); diff --git a/buch/chapters/40-eigenwerte/images/wurzel.pdf b/buch/chapters/40-eigenwerte/images/wurzel.pdf Binary files differnew file mode 100644 index 0000000..751cf33 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/wurzel.pdf diff --git a/buch/chapters/40-eigenwerte/images/wurzel.tex b/buch/chapters/40-eigenwerte/images/wurzel.tex new file mode 100644 index 0000000..ca2825a --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/wurzel.tex @@ -0,0 +1,94 @@ +% +% wurzel.tex -- Wurzel +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{10} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\a{0.8} +\def\U{0} + +\fill[color=blue!20] (0,\a) rectangle (1.00,1.03); +\draw[line width=0.4pt] (0,1) -- (1,1) -- (1,0); + +\draw[->] (0,{-0.01}) -- (0,{1.06}) coordinate[label={right:$y$}]; + +\begin{scope} +\clip (0,0) rectangle (1,1); +\draw[color=blue,line width=1.4pt] plot[domain=0:1.01,samples=100] + ({\x},{\x*\x}); +\end{scope} + +%\draw[color=purple,line width=0.5pt] (0.48,-0.01) -- (1,1); +%\fill[color=purple] (1,1) circle[radius=0.008]; + +\node[color=blue] at (0,{\a}) [left] {$a$}; + +\def\schritt#1#2{ + \xdef\u{\U} + \pgfmathparse{0.5*(\a-\u*\u)} + \xdef\d{\pgfmathresult} + \pgfmathparse{\u+\d} + \xdef\U{\pgfmathresult} + + \fill[color=purple!10] (\u,{\u*\u}) -- (\U,\a) -- (\u,\a) -- cycle; + + \node[color=darkgreen] at (\u,0) [below] {$u_#1$}; + \draw[color=darkgreen,line width=0.1pt] (\u,0)--(\u,\a); + + \fill[color=darkgreen] (\u,{\u*\u}) circle[radius=0.006]; + + \draw[<->,color=darkgreen] (\u,{\u*\u}) -- (\u,\a); + + \draw[color=purple,shorten <= 0.6mm] + (\u,{\u*\u}) -- (\U,\a); +} +\def\marke#1#2{ + \node[color=orange] at ({0.5*(\u+\U)},\a) [#2] {$\frac12(a-u_#1^2)$}; + \draw[<->,color=orange,shorten >= 0mm,shorten <= 0mm] + (\u,\a) -- (\U,\a); +} + +\def\hoehe#1{ + \node[color=darkgreen] at ({\u+0.01},{\a-\d-0.01}) + [above,rotate=90] {$a-u_#1^2$}; +} + +\schritt{0}{1} +\hoehe{0} +\marke{0}{above} + +\schritt{1}{2} +\hoehe{1} +\marke{1}{above} +\node[color=darkgreen] at (\u,{\u*\u-0.02}) [above left] {$u_1^2$}; + +\schritt{2}{3} +\hoehe{2} +%\marke{2}{right,rotate=90} +\marke{2}{above} +\node[color=darkgreen] at (\u,{\u*\u-0.02}) [above left] {$u_2^2$}; + +\schritt{3}{4} + +\draw[color=blue] ({sqrt(\a)},-0.01) -- ({sqrt(\a)},\a); +\node[color=blue] at ({sqrt(\a)-0.02},0) [below right] {$\sqrt{a}$}; + +\draw[->] (-0.01,0) -- (1.05,0) coordinate[label={$u$}]; +\node at (1,0) [below] {$1$}; +\node at (0,1) [left] {$1$}; +\draw (1,-0.01) -- (1,0.01); + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf b/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf Binary files differnew file mode 100644 index 0000000..aeb5e5d --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf diff --git a/buch/chapters/40-eigenwerte/images/wurzelapprox.tex b/buch/chapters/40-eigenwerte/images/wurzelapprox.tex new file mode 100644 index 0000000..676c7e9 --- /dev/null +++ b/buch/chapters/40-eigenwerte/images/wurzelapprox.tex @@ -0,0 +1,107 @@ +% +% wurzelapprox.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{5.7} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\input{wa.tex} + +\begin{scope}[xshift=-0.63cm] + +\draw[->] (-0.01,0) -- (1.05,0) coordinate[label={$t$}]; + +\begin{scope} + \clip (0,0) rectangle (1,1.01); + \draw[color=blue,line width=1.6pt] \pfada; + \draw[color=blue,line width=1.2pt] \pfadb; + \draw[color=blue,line width=1.2pt] \pfadc; + \draw[color=blue,line width=1.2pt] \pfadd; + \draw[color=blue,line width=1.2pt] \pfade; + \draw[color=blue,line width=1.2pt] \pfadf; + \draw[color=blue,line width=1.2pt] \pfadg; + \draw[color=blue,line width=1.2pt] \pfadh; + \draw[color=blue,line width=1.2pt] \pfadi; + \draw[color=blue,line width=1.2pt] \pfadj; + + \draw[color=red,line width=1.6pt] + plot[domain=0:1.01,samples=100] ({\x*\x},{\x}); +\end{scope} + +\node[color=red] at (0.5,0.707) [above,rotate={atan(0.5)}] {$\sqrt{t}$}; + +\draw[->] (0,-0.01) -- (0,1.05) coordinate[label={right:$u_n(t)$}]; + +\foreach \x in {2,4,...,8}{ + \draw ({0.1*\x},-0.01) -- ({0.1*\x},0.01); + \node at ({0.1*\x},-0.01) [below] {0.\x\strut}; + \draw (-0.01,{0.1*\x}) -- (0.01,{0.1*\x}); + \node at (-0.01,{0.1*\x}) [left] {0.\x\strut}; +} +\draw (1,-0.01) -- (1,0.01); +\node at (1,-0.01) [below] {1.0\strut}; +\node at (0,-0.01) [below] {0\strut}; + +\draw (-0.01,1) -- (0.01,1); +\node at (-0.01,1) [left] {1.0\strut}; + +\node[color=blue] at (1.01,0) [above left] {$u_0(t)$}; +\node[color=blue] at (1,0.51) [below left,rotate={atan(0.5)}] {$u_1(t)$}; +\node[color=blue] at (1,{0.86+0.03}) [below left,rotate={atan(0.86)}] {$u_2(t)$}; +\node[color=blue] at (1,1.00) [below left,rotate={atan(0.5)}] {$u_3(t)$}; + +\end{scope} + +\begin{scope}[xshift=0.63cm] + +\begin{scope} + \clip (0,0) rectangle (1,1.01); + \draw[color=darkgreen,line width=1.2pt] \fehlera; + \draw[color=darkgreen,line width=1.2pt] \fehlerb; + \draw[color=darkgreen,line width=1.2pt] \fehlerc; + \draw[color=darkgreen,line width=1.2pt] \fehlerd; + \draw[color=darkgreen,line width=1.2pt] \fehlere; + \draw[color=darkgreen,line width=1.2pt] \fehlerf; + \draw[color=darkgreen,line width=1.2pt] \fehlerg; + \draw[color=darkgreen,line width=1.2pt] \fehlerh; + \draw[color=darkgreen,line width=1.2pt] \fehleri; + \draw[color=darkgreen,line width=1.2pt] \fehlerj; +\end{scope} + +\draw[->] (0,-0.01) -- (0,1.05) coordinate[label={right:${\color{red}\sqrt{t}}-{\color{blue}u_n(t)}$}]; +\draw[->] (-0.01,0) -- (1.05,0) coordinate[label={$t$}]; + +\foreach \x in {2,4,...,9}{ + \draw ({0.1*\x},-0.01) -- ({0.1*\x},0.01); + \node at ({0.1*\x},-0.01) [below] {0.\x\strut}; + \draw (-0.01,{0.1*\x}) -- (0.01,{0.1*\x}); + \node at (-0.01,{0.1*\x}) [left] {0.\x\strut}; +} +\draw (1,-0.01) -- (1,0.01); +\node at (1,-0.01) [below] {1.0\strut}; +\node at (0,-0.01) [below] {0\strut}; + +\draw (-0.01,1) -- (0.01,1); +\node at (-0.01,1) [left] {1.0\strut}; + +\node[color=darkgreen] at (1,1) [below left,rotate={atan(0.5)}] {$n=0$}; +\node[color=darkgreen] at (1,0.5) [above left] {$n=1$}; +\node[color=darkgreen] at (1,0.13) [above left,rotate=-13] {$n=2$}; +\node[color=darkgreen] at (1,0.00) [above left,rotate=-9] {$n=3$}; + +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex index a3f86ba..4bf5c42 100644 --- a/buch/chapters/40-eigenwerte/spektraltheorie.tex +++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex @@ -276,6 +276,25 @@ ergibt, dass jede beliebige Funktion sich als Polynome in $x$ approximieren lässt. Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass. +\begin{figure} +\centering +\includegraphics{chapters/40-eigenwerte/images/wurzel.pdf} +\caption{Konstruktion einer monoton wachsenden Approximationsfolge für +$\sqrt{a}$ +\label{buch:eigenwerte:fig:wurzelverfahren}} +\end{figure} + +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/wurzelapprox.pdf} +\caption{Monoton wachsende Approximation der Funktion $t\mapsto\sqrt{t}$ mit +Polynomen $u_n(t)$ nach +\eqref{buch:eigenwerte:eqn:wurzelapproximation} +(links) und der Fehler der Approximation +(rechts). +\label{buch:eigenwerte:fig:wurzelapproximation}} +\end{figure} + \begin{satz}[Stone-Weierstrass] \label{buch:satz:stone-weierstrass} Enthält eine $\mathbb{R}$-Algebra $A$ von stetigen, rellen Funktionen @@ -286,12 +305,137 @@ reelle Funktion auf $K$ gleichmässig approximierbar durch Funktionen in $A$. \end{satz} +Für den Beweis des Satzes wird ein Hilfsresultat benötigt, welches wir +zunächst ableiten. +Es besagt, dass sich die Wurzelfunktion $t\mapsto\sqrt{t}$ +auf dem Interval $[0,1]$ gleichmässig +von unten durch Polynome approximieren lässt, die in +Abbildung~\ref{buch:eigenwerte:fig:wurzelapproximation} dargestellt +sind. + +\begin{satz} +Die rekursiv definierte Folge von Polynomen +\begin{equation} +u_{n+1}(t) += +u_n(t) + \frac12(t-u_n(t)^2), +\qquad +u_0(t)=0 +\label{buch:eigenwerte:eqn:wurzelapproximation} +\end{equation} +ist monoton wachsend und approximiert die Wurzelfunktion $t\mapsto\sqrt{t}$ +gleichmässig auf dem Intervall $[0,1]$. +\end{satz} + \begin{proof}[Beweis] -XXX TODO +Wer konstruieren zunächst das in +Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren} +visualierte Verfahren, mit dem für jede Zahl $a\in[0,1]$ +die Wurzel $\sqrt{a}$ berechnet werden kann. +Sei $u < \sqrt{a}$ eine Approximation der Wurzel. +Die Approximation ist der exakte Wert der Lösung, wenn $a-u^2=0$. +In jedem anderen Fall muss $u$ um einen Betrag $d$ vergrössert werden. +Natürlich muss immer noch $u+d<\sqrt{a}$ sein. +Man kann die maximal zulässige Korrektur $d$ geometrisch abschätzen, +wie dies in Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren} +skizziert ist. +Die maximale Steigung des Graphen der Funktion $u\mapsto u^2$ ist $2$, +daher darf man $u$ maximal um die Hälfte der Differenz $a-u^2$ (grün) +vergrössern, also $d=\frac12(a-u^2)$. +Die Rekursionsformel +\[ +u_{n+1} = u_n + d = u_n + \frac12(a-u_n^2) +\] +mit dem Startwert $u_0=0$ liefert daher eine +Folge, die gegen $\sqrt{a}$ konvergiert. \end{proof} -Der entscheidende Schritt des Beweises ist, dass man die Betragsfunktion -konstruieren kann. +\begin{proof}[Beweis des Satzes von Stone-Weierstrass] +Da $A$ eine Algebra ist, ist mit jeder Funktion $f\in A$ für jedes Polynome +$p\in\mathbb{R}[X]$ auch $p(f)$ eine Funktion in $A$. +\begin{enumerate} +\item Schritt: Für jede Funktion $f\in A$ lässt sich auch $|f|$ durch +Funktionen in $A$ beliebig genau durch eine monoton wachsende Folge +von Funktionen approximieren. + +Da $A$ eine Algebra ist, ist $f^2\in A$. +Sei ausserdem $m^2=\sup \{f(x)^2\;|\;x\in K\}$, so dass $f^2/m^2$ eine Funktion +mit Werten im Intervall $[0,1]$ ist. +Die Funktionen $f_n(x)=mu_n(f(x)^2/m^2)$ sind ebenfalls in $A$ und +approximieren gleichmässig $\sqrt{f(x)^2}=|f(x)|$. +\item Schritt: Für zwei Funktionen $f,g\in A$ gibt es eine monoton wachsende +Folge, die $\max(f,g)$ gleichmässig beliebig genau approximiert +und eine monoton fallende Folge, die $\min(f,g)$ gleichmässig beliebig +genau approximiert. + +Diese Folgen können aus der Approximationsfolge für den Betrag einer +Funktion und den Identitäten +\begin{align*} +\max(f,g) &= \frac12(f+g+|f-g|) \\ +\min(f,g) &= \frac12(f+g-|f-g|) +\end{align*} +gefunden werden. +\item Schritt: Zu zwei beliebigen Punkten $x,y\in K$ und Werten +$\alpha,\beta\in\mathbb{R}$ gibt es immer eine Funktion in $A$, +die in den Punkten $x,y$ die vorgegebenen Werte $\alpha$ bzw.~$\beta$ +annimmt. +Da $A$ die Punkte trennt, gibt es eine Funktion $f_0$ mit $f_0(x)\ne f_0(y)$. +Dann ist die Funktion +\[ +f(t) += +\beta + \frac{f_0(t)-f_0(y)}{f_0(x)-f_0(y)}(\alpha-\beta) +\] +wohldefiniert und nimmt die verlangten Werte an. +\item Schritt: Zu jeder stetigen Funktion $f\colon K\to\mathbb{R}$, jedem +Punkt $x\in K$ und jedem $\varepsilon>0$ gibt es eine Funktion $g\in A$ derart, +dass $g(x)=f(x)$ und $g(y) \le f(y)+\varepsilon$ für alle $y\in K$. + +Zu jedem $z\in K$ gibt es eine Funktion in $A$ mit +$h_z(x)=f(x)$ und $h_z(z) \le f(z)+\frac12\varepsilon$. +Wegen der Stetigkeit von $h_z$ gibt es eine Umgebung $V_z$ von $z$, in der +immer noch gilt $h_z(y)\le f(y)+\varepsilon$ für $y\in V_z$. +Wegen der Kompaktheit von $K$ kann man endlich viele Punkte $z_i$ wählen +derart, dass die $V_{z_i}$ immer noch $K$ überdecken. +Dann erfüllt die Funktion +\( +g(z) = \inf h_{z_i} +\) +die Bedingungen $g(x) = f(x)$ und für $z\in V_{z_i}$ +\[ +g(z) = \inf_{j} h_{z_j}(z) \le h_{z_i}(z) \le f(z)+\varepsilon. +\] +Ausserdem ist $g(z)$ nach dem zweiten Schritt beliebig genau durch +Funktionen in $A$ approximierbar. +\item Schritt: Jede stetige Funktion $f\colon K\to\mathbb{R}$ kann +beliebig genau durch Funktionen in $A$ approximiert werden. +Sei $\varepsilon > 0$. + +Nach dem vierten Schritt gibt es für jedes $y\in K$ eine Funktion $g_y$ +derart, dass $g_y(y)=f(y)$ und $g_y(x) \le f(x) + \varepsilon$ für +$x\in K$. +Da $g_y$ stetig ist, gilt ausserdem $g_y(x) \ge f(x) -\varepsilon$ in +einer Umgebung $U_y$ von $y$. +Da $K$ kompakt ist, kann man endlich viele $y_i$ derart, dass die $U_{y_i}$ +immer noch ganz $K$ überdecken. +Die Funktion $g=\sup g_{y_i}$ erfüllt dann überall $g(x) \le f(x)+\varepsilon$, +weil jede der Funktionen $g_y$ diese Ungleichung erfüllt. +Ausserdem gilt für $x\in V_{x_j}$ +\[ +g(x) = \sup_i g_{x_i}(x) \ge g_{x_j}(x) \ge f(x)-\varepsilon. +\] +Somit ist +\[ +|f(x)-g(x)| \le \varepsilon. +\] +Damit ist $f(x)$ beliebig nahe an der Funktion $g(x)$, die sich +beliebig genau durch Funktionen aus $A$ approximieren lässt. +\qedhere +\end{enumerate} +\end{proof} + +Im ersten Schritt des Beweises ist ganz entscheidend, dass man die +Betragsfunktion konstruieren kann. Daraus leiten sich dann alle folgenden Konstruktionen ab. \subsubsection{Anwendung auf symmetrische und hermitesche Matrizen} @@ -347,13 +491,66 @@ Folge $p_n(A)$ für Polynomfolgen, die $\operatorname{Sp}(A)$ gleichmässig gegen $f$ konvergieren. \end{satz} -\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen} +\subsubsection{Unmöglichkeit der Approximation von $z\mapsto \overline{z}$ +in $\mathbb{C}[z]$} Der Satz~\ref{buch:satz:stone-weierstrass} von Stone-Weierstrass für reelle Funktionen gilt nicht für komplexe Funktionen. -Der Grund ist, dass im Beweis benötigt wird, dass man den Betrag -einer Funktion approximieren können muss. -Dies geschah, indem zunächst eine Polynom-Approximation für die -Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer +In diesem Abschnitt zeigen wir, dass sich die Funktion $z\mapsto\overline{z}$ +auf der Einheitskreisscheibe $K=\{z\in\mathbb{C}\;|\; |z|\le 1\}$ nicht +gleichmässig durch Polynome $p(z)$ mit komplexen Koeffizienten approximieren +lässt. + +Wäre eine solche Approximation möglich, dann könnte man $\overline{z}$ +auch durch eine Potenzreihe +\[ +\overline{z} += +\sum_{k=0}^\infty a_kz^k +\] +darstellen. +Das Wegintegral beider Seiten über den Pfad $\gamma(t) = e^{it}$ +in der komplexen Ebene ist +\begin{align*} +\oint_\gamma z^k\,dz +&= +\int_0^{2\pi} e^{ikt} ie^{it}\,dt += +i\int_0^{2\pi} e^{it(k+1)}\,dt += +i\biggl[ \frac{1}{i(k+1)} e^{it(k+1)}\biggr]_0^{2\pi} += +0 +\\ +\oint_\gamma +\sum_{k=0}^\infty a_kz^k +\,dz +&= +\sum_{k=0}^\infty a_k \oint_\gamma z^k\,dz += +\sum_{k=0}^\infty a_k\cdot 0 += +0 +\\ +\oint_\gamma \overline{z}\,dz +&= +\int_0^{2\pi} e^{it} ie^{it}\,dt += +i\int_0^{2\pi} \,dt = 2\pi i, +\end{align*} +dabei wurde $\overline{\gamma}(t)=e^{-it}$ verwendet. +Insbesondere widersprechen sich die beiden Integrale. +Die ursprüngliche Annahmen, $\overline{z}$ lasse sich durch Polynome +gleichmässig approximieren, muss daher verworfen werden. + +\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen} +Der Satz von Stone-Weierstrass kann nach dem vorangegangene Abschnitt +also nicht gelten. +Um den Beweis des Satzes~\ref{buch:satz:stone-weierstrass} +auf komplexe Zahlen zu übertragen, muss im ersten Schritt ein Weg +gefunden werden, den Betrag einer Funktion zu approximieren. + +Im reellen Fall geschah dies, indem zunächst eine Polynom-Approximation +für die Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer Funktion angewendet wurde. Der Betrag einer komplexen Zahl $z$ ist aber nicht allein aus $z$ berechenbar, man braucht in irgend einer Form Zugang zu Real- diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex index 2fab61a..dd82067 100644 --- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex @@ -2,7 +2,7 @@ Verwenden Sie die Matrixdarstellung komplexer Zahlen, um $i^i$ zu berechnen. \begin{hinweis} -Verwenden Sie die eulersche Formel um $\log J$ zu bestimmen. +Verwenden Sie die Eulersche Formel um $\log J$ zu bestimmen. \end{hinweis} \begin{loesung} @@ -14,11 +14,11 @@ Zunächst erinnern wir an die Eulersche Formel = \sum_{k=0}^\infty \frac{t^k J^k}{k!} = -\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot E +\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot I + \sum_{i=0}^\infty \frac{t^{2i+1}(-1)^i}{(2i+1)!}\cdot J = -\cos t\cdot E +\cos t\cdot I + \sin t\cdot J. \] @@ -49,7 +49,7 @@ J = \begin{pmatrix} Als nächstes müssen wir $J\log J$ berechnen. Aus \eqref{4001:logvalue} folgt \[ -J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot E. +J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot I. \] Darauf ist die Exponentialreihe auszuwerten, also \[ @@ -57,7 +57,7 @@ J^J = \exp (J\log J) = -\exp(-\frac{\pi}2 E) +\exp(-\frac{\pi}2 I) = \exp \begin{pmatrix} @@ -70,7 +70,7 @@ e^{-\frac{\pi}2}&0\\ 0&e^{-\frac{\pi}2} \end{pmatrix} = -e^{-\frac{\pi}2} E. +e^{-\frac{\pi}2} I. \] Als komplexe Zahlen ausgedrückt folgt also $i^i = e^{-\frac{\pi}2}$. \end{loesung} diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex index 3cd9959..b749356 100644 --- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex @@ -78,11 +78,11 @@ Ab_1 = 3b_1 \] ab. -Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-eE)$ +Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-2I)$ bestimmen. -Die vierte Potenz von $A-2E$ ist +Die vierte Potenz von $A-2I$ ist \begin{equation} -(A-2E)^4 +(A-2I)^4 = \begin{pmatrix} 0& 0& 0& 0\\ @@ -108,13 +108,13 @@ b_4 = \begin{pmatrix}0\\0\\1\\2\end{pmatrix} \] -für den Kern $\mathcal{K}(A-2E)$ ablesen. -Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2E) -= \mathcal{J}(A-3E)$ sein. -Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2E$ +für den Kern $\mathcal{K}(A-2I)$ ablesen. +Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2I) += \mathcal{J}(A-3I)$ sein. +Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2I$ berechnen, sie ist \[ -(A-2E)^4 +(A-2I)^4 = \begin{pmatrix} 79& -26& 152& -152\\ @@ -124,7 +124,7 @@ berechnen, sie ist \end{pmatrix}. \] Die Spaltenvektoren lassen sich alle durch die Vektoren $b_2$, $b_3$ -und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2E)=\langle b_2,b_3,b_4\rangle$. +und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2I)=\langle b_2,b_3,b_4\rangle$. Indem die Vektoren $b_i$ als Spalten in eine Matrix $T$ schreibt, kann man jetzt berechnen, wie die Matrix der linearen Abbildung in dieser neuen @@ -154,16 +154,16 @@ A_1 \end{pmatrix} \] in der rechten unteren Ecke hat den dreifachen Eigenwert $2$, -und die Potenzen von $A_1-2E$ sind +und die Potenzen von $A_1-2I$ sind \[ -A_1-2E +A_1-2I \begin{pmatrix} -15 & 5& 29\\ -27 & 9& 51\\ -3 & 1& 6 \end{pmatrix} ,\qquad -(A_1-2E)^2 +(A_1-2I)^2 = \begin{pmatrix} 3 & -1 & -6\\ @@ -171,10 +171,10 @@ A_1-2E 0 & 0 & 0\\ \end{pmatrix} ,\qquad -(A_1-2E)^3=0. +(A_1-2I)^3=0. \] Für die Jordan-Normalform brauchen wir einen von $0$ verschiedenen -Vektor im Kern von $(A_1-2E)^2$, zum Beispiel den Vektor mit den +Vektor im Kern von $(A_1-2I)^2$, zum Beispiel den Vektor mit den Komponenten $1,3,1$. Man beachte aber, dass diese Komponenten jetzt in der neuen Basis $b_2,\dots,b_4$ zu verstehen sind, d.~h.~der Vektor, den wir suchen, ist @@ -185,7 +185,7 @@ b_1+ 3b_2+b_3 = \begin{pmatrix}1\\3\\1\\2\end{pmatrix}. \] -Jetzt berechnen wir die Bilder von $c_3$ unter $A-2E$: +Jetzt berechnen wir die Bilder von $c_3$ unter $A-2I$: \[ c_2 = |