diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-02-09 21:52:16 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-02-09 21:52:16 +0100 |
commit | ada53a9c225b896c8d7608300427aac475bb7045 (patch) | |
tree | 1b1fe99c3e78256ff839611225dd61d983b96575 /buch/chapters/50-permutationen/endlich.tex | |
parent | Illustrationen Markov-Ketten (diff) | |
download | SeminarMatrizen-ada53a9c225b896c8d7608300427aac475bb7045.tar.gz SeminarMatrizen-ada53a9c225b896c8d7608300427aac475bb7045.zip |
move all iamges to separate files
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/50-permutationen/endlich.tex | 106 |
1 files changed, 3 insertions, 103 deletions
diff --git a/buch/chapters/50-permutationen/endlich.tex b/buch/chapters/50-permutationen/endlich.tex index 7669a17..700c0f2 100644 --- a/buch/chapters/50-permutationen/endlich.tex +++ b/buch/chapters/50-permutationen/endlich.tex @@ -21,31 +21,7 @@ Element} der Gruppe $S_n$ und wir auch mit $e$ bezeichnet. \subsection{Permutationen als $2\times n$-Matrizen} Eine Permutation kann als $2\times n$-Matrix geschrieben werden: \begin{center} -\begin{tikzpicture}[>=latex,thick] -\def\sx{0.8} -\def\sy{1} -\begin{scope}[xshift=-3cm] -\foreach \x in {1,...,6}{ - \node at ({(\x-1)*\sx},\sy) [above] {$\tiny\x$}; - \fill ({(\x-1)*\sx},\sy) circle[radius=0.05]; - \fill ({(\x-1)*\sx},0) circle[radius=0.05]; -} -\draw[->] (0,\sy) to[out=-70,in=110] (\sx,0); -\draw[<-] (0,0) to[out=70,in=-110] (\sx,\sy); -\draw[->] ({2*\sx},\sy) -- ({2*\sx},0); -\draw[->] ({3*\sx},\sy) to[out=-70,in=110] ({4*\sx},0); -\draw[->] ({4*\sx},\sy) to[out=-70,in=110] ({5*\sx},0); -\draw[->] ({5*\sx},\sy) to[out=-110,in=70] ({3*\sx},0); -\end{scope} -\node at (2.4,{\sy/2}) {$\mathstrut=\mathstrut$}; -\node at (5,{\sy/2}) {$\displaystyle -\renewcommand{\arraystretch}{1.4} -\begin{pmatrix} -1&2&3&4&5&6\\ -2&1&3&5&6&4 -\end{pmatrix} -$}; -\end{tikzpicture} +\includegraphics{chapters/50-permutationen/images/permutation.pdf} \end{center} Das neutrale Element hat die Matrix \[ @@ -64,43 +40,7 @@ Permutation angeordnet. Die zusammengesetzte Permutation kann dann in der zweiten Zeile der zweiten Permutation abgelesen werden: \begin{center} -\begin{tikzpicture}[>=latex,thick] -\begin{scope}[xshift=-4.5cm] -\node at (0,0) {$\displaystyle -\sigma_1=\begin{pmatrix} -1&2&3&4&5&6\\ -2&1&3&5&6&4 -\end{pmatrix}$}; -\node at (0,-1) {$\displaystyle -\sigma_2=\begin{pmatrix} -1&2&3&4&5&6\\ -3&4&5&6&1&2 -\end{pmatrix} -$}; -\end{scope} -\begin{scope} -\node at (0,0) {$\displaystyle -\begin{pmatrix} -1&2&3&4&5&6\\ -2&1&3&5&6&4 -\end{pmatrix}$}; -\node at (0,-1) {$\displaystyle -\begin{pmatrix} -2&1&3&5&6&4\\ -4&3&5&1&2&6 -\end{pmatrix} -$}; - -\end{scope} -\begin{scope}[xshift=4.5cm] -\node at (0,-0.5) {$\displaystyle -\sigma_2\sigma_1=\begin{pmatrix} -1&2&3&4&5&6\\ -4&3&5&1&2&6 -\end{pmatrix} -$}; -\end{scope} -\end{tikzpicture} +\includegraphics{chapters/50-permutationen/images/komposition.pdf} \end{center} Die Inverse einer Permutation kann erhalten werden, indem die beiden Zeilen vertauscht werden und dann die Spalten wieder so angeordnet werden, @@ -130,47 +70,7 @@ Eine Permutation $\sigma\in S_n$ kann auch mit sogenanten Zyklenzerlegung analysiert werden. Zum Beispiel: \begin{center} -\begin{tikzpicture}[>=latex,thick] -\begin{scope}[xshift=-3cm] -\node at (0,0) {$\displaystyle -\sigma=\begin{pmatrix} -{\color{red}1}&{\color{red}2}&{\color{darkgreen}3}&{\color{blue}4}&{\color{blue}5}&{\color{blue}6}\\ -{\color{red}2}&{\color{red}1}&{\color{darkgreen}3}&{\color{blue}5}&{\color{blue}6}&{\color{blue}4} -\end{pmatrix}$}; -\end{scope} -\node at (0,0) {$\mathstrut=\mathstrut$}; -\begin{scope}[xshift=1.5cm] -\coordinate (A) at (0,0.5); -\coordinate (B) at (0,-0.5); -\draw[->,color=red] (A) to[out=-20,in=20] (0,-0.5); -\draw[->,color=red] (B) to[out=160,in=-160] (0,0.5); -\node at (A) [above] {$\tiny 1$}; -\node at (B) [below] {$\tiny 2$}; -\fill (A) circle[radius=0.05]; -\fill (B) circle[radius=0.05]; - -\coordinate (C) at (1.5,0.25); -\node at (C) [above] {$\tiny 3$}; -\draw[->,color=darkgreen] ({1.5+0.01},0.25) to[out=-10,in=-170] ({1.5-0.01},0.25); -\draw[color=darkgreen] (1.5,{0.25-0.3}) circle[radius=0.3]; -\fill (C) circle[radius=0.05]; - -\def\r{0.5} -\coordinate (D) at ({3.5+\r*cos(90)},{0+\r*sin(90)}); -\coordinate (E) at ({3.5+\r*cos(210)},{0+\r*sin(210)}); -\coordinate (F) at ({3.5+\r*cos(330)},{0+\r*sin(330)}); -\node at (D) [above] {$\tiny 4$}; -\node at (E) [below left] {$\tiny 5$}; -\node at (F) [below right] {$\tiny 6$}; -\draw[->,color=blue] (D) to[out=180,in=120] (E); -\draw[->,color=blue] (E) to[out=-60,in=-120] (F); -\draw[->,color=blue] (F) to[out=60,in=0] (D); -\fill (D) circle[radius=0.05]; -\fill (E) circle[radius=0.05]; -\fill (F) circle[radius=0.05]; - -\end{scope} -\end{tikzpicture} +\includegraphics{chapters/50-permutationen/images/zyklenzerlegung.pdf} \end{center} \begin{definition} |