diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-23 19:54:10 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-23 19:54:10 +0100 |
commit | 3dc190b1151b67bfd47d148b5e466e19d6890e12 (patch) | |
tree | f5906b96e6ea5fe4d69d85da1bd3ed914f6ba14c /buch/chapters/60-gruppen | |
parent | add week 5 presentation (diff) | |
download | SeminarMatrizen-3dc190b1151b67bfd47d148b5e466e19d6890e12.tar.gz SeminarMatrizen-3dc190b1151b67bfd47d148b5e466e19d6890e12.zip |
intro Lie-Gruppen
Diffstat (limited to 'buch/chapters/60-gruppen')
-rw-r--r-- | buch/chapters/60-gruppen/chapter.tex | 24 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/lie-gruppen.tex | 139 |
2 files changed, 163 insertions, 0 deletions
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index d07db3f..c2aa68d 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -7,6 +7,30 @@ \label{buch:chapter:matrizengruppen}} \lhead{Matrizengruppen} \rhead{} +Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder +physikalischen Systemen zu beschreiben. +Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu +auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer +phyisikalischen Grösse über die Zeit. +Solche Symmetrien müssen durch Matrizen beschrieben werden können, +die auf stetige oder sogar differenzierbare Art von der Zeit abhängen. +Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt +werden, muss also eine zusätzliche Struktur haben, die ermöglicht, +sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen +zu sprechen. + +Die Menge der Matrizen bilden zunächst eine Gruppe, +die zusätzliche differenziarbare Struktur macht daraus +eine sogenannte Lie-Gruppe. +Die Ableitungen nach einem Parameter liegen in der sogenannten +Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen +Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt. +Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft, +so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften +der Lie-Gruppe aus der Lie-Algebra ableiten lassen. +Die Verbindung wird hergestellt durch die Exponentialabbildung. +Ziel dieses Kapitels ist, die Grundzüge dieses interessanten +Zusammenhangs darzustellen. \input{chapters/60-gruppen/symmetrien.tex} \input{chapters/60-gruppen/lie-gruppen.tex} diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index cb1ca84..022de97 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -6,3 +6,142 @@ \section{Lie-Gruppen \label{buch:section:lie-gruppen}} \rhead{Lie-Gruppen} + +\subsection{Drehungen in der Ebene +\label{buch:gruppen:drehungen2d}} +Drehungen der Ebene können in einer orthonormierten Basis durch +Matrizen der Form +\[ +D_{\alpha} += +\begin{pmatrix} +\cos\alpha&-\sin\alpha\\ +\sin\alpha& \cos\alpha +\end{pmatrix} +\] +dargestellt werden. +Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit +$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$. +Die Abbildung +\[ +D_{\bullet} +\colon +\mathbb{R}\to \operatorname{SO}(2) +: +\alpha \mapsto D_{\alpha} +\] +hat die Eigenschaften +\begin{align*} +D_{\alpha+\beta}&= D_{\alpha}D_{\beta} +\\ +D_0&=I +\\ +D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}. +\end{align*} +Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische +Funktion ist. +$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf +die Menge der Drehmatrizen in der Ebene ab. + +Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen +Ebene $\mathbb{C}$ erhalten. +Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine +Drehung der komplexen Ebene um den Winkel $\alpha$. +Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung +\[ +f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha} +\] +hat die Eigenschaften +\begin{align*} +f(\alpha+\beta) &= f(\alpha)f(\beta) +\\ +f(0)&=1 +\\ +f(2\pi k)&=1\qquad\forall k\in\mathbb{Z}, +\end{align*} +die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$ +analog sind. + +Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form +$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des +Einheitskreises in der Ebene. +Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom +Betrag $1$. +$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl +$z,w\in S^1$ gilt +$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$. + +Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache +von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$. +Damit kann man jetzt die Abbildung +\[ +\varphi +\colon +S^1\to \operatorname{SO}(2) +: +z\mapsto D_{\alpha(z)} +\] +konstruieren. +Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache +von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche +Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher +wohldefiniert. +$\varphi$ erfüllt ausserdem die Bedingungen +\begin{align*} +\varphi(z_1z_2) +&= +D_{\alpha(z_1z_2)} += +D_{\alpha(z_1)+\alpha(z_2)} += +D_{\alpha(z_1)}D_{\alpha(z_2)} += +\varphi(z_1)\varphi(z_2) +\\ +\varphi(1) +&= +D_{\alpha(1)} += +D_0 += +I +\end{align*} +Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$ +in die Gruppe $\operatorname{SO}(2)$. +Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis +in der komplexen Ebene identifiziert werden. + +\subsection{Isometrien von $\mathbb{R}^n$ +\label{buch:gruppen:isometrien}} +Lineare Abbildungen der Ebene $\mathbb{R}^n$ mit dem üblichen Skalarprodukt +können durch $n\times n$-Matrizen beschrieben werden. +Die Matrizen, die das Skalarprodukt erhalten, bilden eine Gruppe, +die in diesem Abschnitt genauer untersucht werden soll. +Eine Matrix $A\in M_{2}(\mathbb{R})$ ändert das Skalarprodukt nicht, wenn +für jedes beliebige Paar $x,y$ von Vektoren gilt +$\langle Ax,Ay\rangle = \langle x,y\rangle$. +Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden: +\[ +\langle Ax,Ay\rangle += +(Ax)^tAy += +x^tA^tAy += +x^ty += +\langle x,y\rangle +\] +für jedes Paar von Vektoren $x,y\in\mathbb{R}$. + +Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix +einer Abbildung $f$ in der Standardbasis bestimmen. +Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion +des Vektors $v$ auf die Richtung $e_i$. +Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$. +Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente +$a_{ij}=e_i^tAe_j$. + + +\subsection{Die Gruppe $\operatorname{SU}(2)$ +\label{buch:gruppen:su2}} |