aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen/chapter.tex
diff options
context:
space:
mode:
authorLordMcFungus <mceagle117@gmail.com>2021-03-22 18:05:11 +0100
committerGitHub <noreply@github.com>2021-03-22 18:05:11 +0100
commit76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch)
tree11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /buch/chapters/70-graphen/chapter.tex
parentmore chapter structure (diff)
parentadd title image (diff)
downloadSeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz
SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to '')
-rw-r--r--buch/chapters/70-graphen/chapter.tex9
1 files changed, 5 insertions, 4 deletions
diff --git a/buch/chapters/70-graphen/chapter.tex b/buch/chapters/70-graphen/chapter.tex
index ae1bb9c..b6e02c9 100644
--- a/buch/chapters/70-graphen/chapter.tex
+++ b/buch/chapters/70-graphen/chapter.tex
@@ -14,18 +14,19 @@ aber auch viele andere Datenstrukturen.
\index{Graph}%
Die Knoten können einzelne Objekte beschreiben, die Kanten beschreiben
dann Beziehungen zwischen diesen Objekten.
-Graphen haben zwar nur eine eindimensionale Geometrie, sie können aber als
-erste Approximation auch dreidimensionaler Objekte dienen.
+Graphen haben zwar nur eine eindimensionale Geometrie, sie können aber auch als
+erste Approximation dreidimensionaler Objekte dienen.
Die Bedeutung des Graphenkozeptes wird unterstrichen von der Vielzahl
-von Fragestellungen, die über Graphen gestellt worden sind und der
+von Fragestellungen, die über Graphen gestellt, und der
zugehöriten Lösungsalgorithmen, die zu ihrer Beantwortung gefunden
worden sind.
Die Komplexitätstheorie hat sogar gezeigt, dass sich jedes diskrete
Problem in ein Graphenproblem umformulieren lässt.
\index{Komplexitätstheorie}%
+
Das Problem, einen Stundenplan zu finden, der sicherstellt, dass
-alle Studierenden an jedes Fach besuchen können, für die sie sich
+alle Studierenden jedes Fach besuchen können, für die sie sich
angemeldet haben, lässt sich zum Beispiel wie folgt als ein
Graphenproblem formulieren.
Die Fächer betrachten wir als Knoten des Graphen.