diff options
author | Reto <reto.fritsche@ost.ch> | 2021-08-31 23:42:02 +0200 |
---|---|---|
committer | Reto <reto.fritsche@ost.ch> | 2021-08-31 23:42:02 +0200 |
commit | 2657b49e75509661039bd8b35fdf9a23d4807b1b (patch) | |
tree | 5cb374246353de7357435d9abc09efa9172ef63f /buch/chapters/95-homologie/eulerchar.tex | |
parent | added syndrome table (diff) | |
parent | Kapitel 3 (diff) | |
download | SeminarMatrizen-2657b49e75509661039bd8b35fdf9a23d4807b1b.tar.gz SeminarMatrizen-2657b49e75509661039bd8b35fdf9a23d4807b1b.zip |
Merge remote-tracking branch 'upstream/master' into mceliece
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/95-homologie/eulerchar.tex | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/buch/chapters/95-homologie/eulerchar.tex b/buch/chapters/95-homologie/eulerchar.tex new file mode 100644 index 0000000..03e389b --- /dev/null +++ b/buch/chapters/95-homologie/eulerchar.tex @@ -0,0 +1,139 @@ +\subsection{Euler-Charakteristik} +Die Homologiegruppen fassen die Idee, die ``Löcher'' in +Dimension $k$ eines Polyeders zu zählen, algebraisch exakt. +Dazu ist aber die algebraische Struktur von $H_k(C)$ gar +nicht nötig, nur schon die Dimension des Vektorraumes $H_k(C)$ +liefert bereits die verlange Information. + +Dies ist auch der Ansatz, den der eulersche Polyedersatz verfolgt. +Euler hat für dreidimensionale Polyeder eine Invariante gefunden, +die unabhängig ist von der Triangulation. + +\begin{definition} +\label{buch:homologie:def:eulerchar0} +Ist $E$ die Anzahl der Ecken, $K$ die Anzahl der Kanten und $F$ +die Anzahl der Flächen eines dreidimensionalen Polyeders $P$, dann +heisst +\[ +\chi(P) = E-K+F +\] +die {\em Euler-Charakteristik} des Polyeders $P$. +\end{definition} + +Der Eulersche Polyedersatz, den wir nicht gesondert beweisen +wollen, besagt, dass $\chi(P)$ unabhängig ist von der +Triangulation. +Alle regelmässigen Polyeder sind verschiedene Triangulationen +einer Kugel, sie haben alle den gleichen Wert $2$ +der Euler-Charakteristik. + +Ändert man die Triangulation, dann wird die Dimension der +Vektorräume $B_k(C)$ und $Z_k(C)$ grösser werden. +Kann man eine Grösse analog zu $\chi(P)$ finden, die sich nicht ändert? + +\begin{definition} +\label{buch:homologie:def:eulerchar} +Sei $C$ ein Kettenkomplex, dann heisst +\[ +\chi(C) = \sum_{k=0}^n (-1)^k\dim H_k(C) +\] +die Euler-Charakteristik von $C$. +\end{definition} + +Die Summe in Definition~\ref{buch:homologie:def:eulerchar} erstreckt +sich bis zum Index $n$, der Dimension des Simplexes höchster Dimension +in einem Polyeder. +Für $k>n$ ist $H_k(C)=0$, es ändert sich also nichts, wenn wir +die Summe bis $\infty$ erstrecken, da die zusätzlichen Terme alle +$0$ sind. +Wir werden dies im folgenden zur Vereinfachung der Notation tun. + +Die Definition verlangt, dass man erst die Homologiegruppen +berechnen muss, bevor man die Euler-Charakteristik bestimmen +kann. +Dies ist aber in vielen Fällen gar nicht nötig, da dies nur +eine Frage der Dimensionen ist, die man direkt aus den +$C_k$ ablesen kann, wie wir nun zeigen wollen. + +Die Dimension der Homologiegruppen ist +\begin{equation} +\dim H_k(C) += +\dim \bigl(Z_k(C) / B_k(C)\bigr) += +\dim Z_k(C) - \dim B_k(C). +\label{buch:homologie:eqn:dimHk} +\end{equation} +Die Bestimmung der Dimensionen der Zyklen und Ränder erfordert +aber immer noch, dass wir dafür Basen bestimmen müssen, es ist +also noch nichts eingespart. +Die Zyklen bilden den Kern von $\partial$, also +\[ +\dim Z_k(C) = \dim\ker \partial_k. +\] +Die Ränder $B_k(C)$ sind die Bilder von $\partial_{k+1}$, also +\[ +\dim B_k(C) += +\dim C_{k+1} - \ker\partial_{k+1} += +\dim C_{k+1} - \dim Z_{k+1}(C). +\] +Daraus kann man jetzt eine Formel für die Euler-Charakteristik +gewinnen. +Sie ist +\begin{align*} +\chi(C) +&= +\sum_{k=0}^\infty (-1)^k \dim H_k(C) +\\ +&= +\sum_{k=0}^\infty (-1)^k \bigl(\dim Z_k(C) - \dim B_k(C)\bigr) +\\ +&= +\sum_{k=0}^\infty (-1)^k \dim Z_k(C) +- +\sum_{k=0}^\infty (-1)^k \bigl(\dim C_{k+1} - \dim_{k+1}(C)\bigr) +\\ +&= +-\sum_{k=0}^\infty (-1)^k \dim C_{k+1} ++ +\sum_{k=0}^\infty (-1)^k \dim Z_k(C) ++ +\sum_{k=0}^\infty (-1)^k \dim Z_{k+1}(C). +\intertext{Indem wir in der letzten Summe den Summationsindex $k$ durch +$k-1$ ersetzen, können wir bis auf den ersten Term die Summen +der $\dim Z_k(C)$ zum Verschwinden bringen:} +&= +-\sum_{k=0}^\infty (-1)^k \dim C_{k+1} ++ +\sum_{k=0}^\infty (-1)^k \dim Z_k(C) +- +\sum_{k=1}^\infty (-1)^k \dim Z_k(C) +\\ +&= +\sum_{k=1}^\infty (-1)^k \dim C_{k} ++ +\dim \underbrace{Z_0(C)}_{\displaystyle =C_0}. +\intertext{In der letzten Umformung haben wir auch in der ersten +Summe den Summationsindex $k$ durch $k-1$ ersetzt. +Damit beginnt die Summation bei $k=1$. +Der fehlende Term ist genau der Term, der von den Summen der +$\dim Z_k(C)$ übrig bleibt. +Damit erhalten wir} +&= +\sum_{k=0}^\infty (-1)^k \dim C_{k}. +\end{align*} + +\begin{satz} +Für die Euler-Charakteristik eines endlichdimensionalen Kettenkomplexes $C$ gilt +\[ +\chi(C) += +\sum_{k=0}^\infty (-1)^k \dim H_k(C) += +\sum_{k=0}^\infty (-1)^k \dim C_k. +\] +\end{satz} +Im nächsten Abschnitt wird gezeigt, dass die Euler-Charakteristik +als Spezialfall der Lefshetz-Zahl verstanden werden kann. |