aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/clifford
diff options
context:
space:
mode:
authorMalarius1999 <malarius1999@gmail.com>2021-07-30 11:39:21 +0200
committerMalarius1999 <malarius1999@gmail.com>2021-07-30 11:39:21 +0200
commit903d9bf106456b14f7e5046410d512ed343d28a4 (patch)
tree2ad850583974f596b1dd7b868e93acdb0cf31411 /buch/papers/clifford
parentVerbesserungen Kapitel Rotation (diff)
downloadSeminarMatrizen-903d9bf106456b14f7e5046410d512ed343d28a4.tar.gz
SeminarMatrizen-903d9bf106456b14f7e5046410d512ed343d28a4.zip
Verbesserungsvorschläge in Kapitel Spieglung & Rotation umgesetzt
Diffstat (limited to '')
-rw-r--r--buch/papers/clifford/7_Reflektion.tex26
-rw-r--r--buch/papers/clifford/8_Rotation.tex74
2 files changed, 56 insertions, 44 deletions
diff --git a/buch/papers/clifford/7_Reflektion.tex b/buch/papers/clifford/7_Reflektion.tex
index bdfb4e8..e650d5a 100644
--- a/buch/papers/clifford/7_Reflektion.tex
+++ b/buch/papers/clifford/7_Reflektion.tex
@@ -6,7 +6,7 @@
\section{Spiegelung}
\rhead{Spiegelung}
-Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Spiegelung auch eine einfache, praktische Formulierung besitzen.
+Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere Operationen, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Spiegelung auch eine einfache, praktische Formulierung besitzen.
\begin{figure}
\centering
\begin{tikzpicture}
@@ -35,9 +35,9 @@ Aus der linearen Algebra ist bekannt, dass man eine Spiegelung an einer Ebene wi
\begin{equation} \label{RefLinAlg}
\mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\parallel \hat{n}}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}}.
\end{equation}
- Per Definition sind $\mathbf{v_{\parallel \hat{n}}} = \mathbf{v_{\perp u}}$. In der geometrischen Algebra verwenden wir aber in den Formeln Vektoren, welche Spiegelachsen, nicht Spiegelebenen, repräsentieren.
\end{definition}
-Es scheint für diese Formel aber umständlich zu sein, weitere Spiegelungen mit weiteren Spiegelebenen anzufügen. Man kann diese Abbildung aber auch als Matrix schreiben. Sei $\mathbf{\hat{n}}$ ein Normalenvektor auf die Spiegelungs-Achse bzw. -Ebene, also $\mathbf{\hat{n}}\perp \mathbf{u}$, und sei ausserdem normiert $|\mathbf{\hat{n}}| = 1$, dann kann man die Spiegelung durch die Matrix
+Per Definition sind $\mathbf{v_{\parallel \hat{n}}} = \mathbf{v_{\perp u}}$, aber in der geometrischen Algebra verwenden wir bevorzugter weise in den Formeln Vektoren, welche eine Spiegelung an einer Hyperebene beschreiben. Im zweidimensionalen repräsentiert der Vektor $\mathbf{v^{'}}$ also eine Spiegelung vom Vektor $\mathbf{v}$ an einer Gerade und im dreidimensionalen eine Spiegelung an einer Ebene.
+Es scheint für diese Formel \eqref{RefLinAlg} aber umständlich zu sein, weitere Spiegelungen mit weiteren Spiegelebenen anzufügen. Man kann diese Abbildung aber auch als Matrix schreiben. Sei $\mathbf{\hat{n}}$ ein Normalenvektor auf die Spiegelungs-Achse bzw. -Ebene, also $\mathbf{\hat{n}}\perp \mathbf{u}$, und sei ausserdem normiert $|\mathbf{\hat{n}}| = 1$, dann kann man die Spiegelung durch die Matrix
\begin{align}
S = E - 2\dfrac{1}{|\mathbf{n}|^2}\mathbf{nn}^t
\end{align}
@@ -46,16 +46,16 @@ beschrieben werden. In der zweiten und dritten Dimension ergibt die Berechnung
S_2 = \begin{pmatrix}
1-2n_1^2 & -2n_1n_2 \\
-2n_1n_2 & 1-2n_2^2
- \end{pmatrix} \quad
+ \end{pmatrix}\enspace\text{und}\enspace
S_3 = \begin{pmatrix}
1-2n_1^2 & -2n_1n_2 & -2n_1n_3\\
-2n_1n_2 & 1-2n_2^2 & -2n_2n_3\\
-2n_1n_3 & -2n_2n_3 & 1-2n_3^2\\
\end{pmatrix}.
\end{align}
-Diese Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S\in \text{O}(n)$ an. Die Matrizengruppe $\text{O}(n)$ haben die Eigenschaft $S^t S = E$, was bedeutet, dass die Länge und Winkel bei der Abbildung beibehalten bleiben. Zusätzlich sind die Spiegelmatrizen symmetrisch, es gilt $S^t = S$. Somit liefert zweimal dieselbe Spiegelung wieder die identische Abbildung, wie man aus
+Diese Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S_n\in \text{O}(n)$ an. Die Matrizengruppe $\text{O}(n)$ haben die Eigenschaft $S_n^t S_n = E$, was bedeutet, dass die Länge und Winkel bei der Abbildung beibehalten bleiben. Zusätzlich sind die Spiegelmatrizen symmetrisch, es gilt $S_n^t = S_n$. Somit liefert zweimal dieselbe Spiegelung wieder die identische Abbildung, wie man aus
\begin{align}
- S^t S = S^2 = E
+ S_n^t S_n = S_n^2 = E
\end{align}
schliessen kann.
@@ -63,11 +63,16 @@ schliessen kann.
Um die folgenden Formeln zu verstehen, definieren wir zuerst die Inverse eines Vektors, welche in dieser Form nicht in der linearen Algebra nicht existiert.
\begin{definition}
Die Inverse eines Vektors wird definiert als
- \begin{align}
- \mathbf{u}^{-1} = \dfrac{\mathbf{u}}{|\mathbf{u}|^2} \Rightarrow \mathbf{uu}^{-1} = \dfrac{\mathbf{u}^2}{|\mathbf{u}|^2} = 1.
+ \begin{align} \label{InverseGA}
+ \mathbf{u}^{-1} = \dfrac{\mathbf{u}}{|\mathbf{u}|^2}.
\end{align}
- Wie schon aus anderen algebraischen Strukturen bekannt, ergibt ein Element, hier $\mathbf{u}$, multipliziert mit dessen Inversen, hier $\mathbf{u}^{-1}$, das neutrale Element der Struktur, hier 1.
\end{definition}
+Diese Definition ist sinnvoll, da wegen $\mathbf{u}^2 = |\mathbf{u}|^2$ folgt
+\begin{align}
+ \mathbf{uu}^{-1} = \mathbf{u} \frac{\mathbf{u}}{|\mathbf{u}|^2} = \frac{\mathbf{u}^2}{|\mathbf{u}|^2} = \frac{|\mathbf{u}|^2}{|\mathbf{u}|^2} = 1.
+\end{align}
+Der Vektor $\mathbf{u}^{-1}$ in \eqref{InverseGA} ist also tatsächlich das inverse Element im Sinne des Produktes in der geometrischen Algebra.
+
Die geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} für eine Spiegelung eine einfache und intuitive Form her, welche auch für weitere Operationen erweitert werden kann.
\begin{definition}
Die Spiegelungsgleichung in der geometrischen Algebra mit der Spiegelachse $\mathbf{u}$ ist definiert als
@@ -75,8 +80,7 @@ Die geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} für ein
\mathbf{v}' = \mathbf{uvu}^{-1}
\end{align}
\end{definition}
-
-verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, welcher die Länge 1 besitzt, wird die Gleichung zu
+Verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, welcher die Länge 1 besitzt, wird die Gleichung zu
\begin{align}
\mathbf{v'} = \mathbf{\hat{u}v\hat{u}}
\end{align}
diff --git a/buch/papers/clifford/8_Rotation.tex b/buch/papers/clifford/8_Rotation.tex
index 6a3251a..b960b56 100644
--- a/buch/papers/clifford/8_Rotation.tex
+++ b/buch/papers/clifford/8_Rotation.tex
@@ -6,7 +6,7 @@
\section{Rotation}
\rhead{Rotation}
-Eine Rotation kann man aus zwei aufeinanderfolgenden Spiegelungen bilden. Das wird für einige zuerst eine verwirrende Aussage sein, da man aus den vorherig gezeigten Formeln annehmen könnte, dass die Spiegelung schon für eine Drehung ausreicht. Obwohl sich die Längen, Winkel und Volumen sich bei einer Spiegelung, wie bei einer Rotation, nicht ändert, sind sie doch verschieden, da die Orientierung bei der Spiegelung invertiert wird. Stellt man sich beispielsweise ein Objekt im Dreidimensionalen vor und spiegelt dieses an einer Fläche, dann ist es unmöglich nur durch eine Rotation (egal an welchem Punkt) das ursprüngliche Objekt deckungsgleich auf das Gespiegelte zu drehen. Hingegen ist es wiederum möglich ein zweifach gespiegeltes Objekt durch eine Drehung zu erreichen. Das liegt daran, da die Orientierung zweimal invertiert wurde.
+Eine Rotation kann man aus zwei aufeinanderfolgenden Spiegelungen bilden. Das kann vielleicht zuerst eine verwirrende Aussage sein, da man aus den vorherig gezeigten Formeln annehmen könnte, dass die Spiegelung schon für eine Drehung ausreicht. Obwohl sich die Längen, Winkel und Volumen sich bei einer Spiegelung, wie bei einer Rotation, nicht ändert, sind sie doch verschieden, da die Orientierung bei der Spiegelung invertiert wird. Stellt man sich beispielsweise ein Objekt im Dreidimensionalen vor und spiegelt dieses an einer Fläche, dann ist es unmöglich nur durch eine Rotation (egal an welchem Punkt) das ursprüngliche Objekt deckungsgleich auf das Gespiegelte zu drehen. Hingegen ist es wiederum möglich ein zweifach gespiegeltes Objekt durch eine Drehung zu erreichen. Das liegt daran, da die Orientierung zweimal invertiert wurde.
\\(Hier wird noch ein Bild für das Verständnis eingefügt)
\begin{figure}
@@ -49,72 +49,80 @@ Diese Drehmatrizen gehören der speziellen orthogonalen Matrizengruppe $D\in \te
\subsection{Geometrische Algebra}
Da wir jetzt aus der Geometrie wissen, dass eine Rotation durch zwei Spiegelungen gebildet werden kann, können wir die Rotation mit der Formel \eqref{RefGA} einfach herleiten.
\begin{satz}
- Eine Rotation
+ Durch zwei nacheinander auf einen Vektor $\mathbf{v}$ angewendete Spiegelungen lässt sich eine Rotation
\begin{align} \label{rotGA}
\mathbf{v}'' = \mathbf{wv}'\mathbf{w}^{-1} = \mathbf{w}(\mathbf{uvu}^{-1})\mathbf{w}^{-1} = (\mathbf{wu})\mathbf{v}(\mathbf{u}^{-1}\mathbf{w}^{-1})
\end{align}
- lässt sich durch zwei nacheinander auf einen Vektor $\mathbf{v}$ angewendete Spiegelungen beschreiben.
+ beschreiben.
\end{satz}
Die Vektoren $\mathbf{w}$ und $\mathbf{u}$ bilden hier wiederum die Spiegelachsen. Diese Formel versuchen wir jetzt noch durch Umstrukturierung zu verbessern.
\subsubsection{Exponentialform}
-Dazu leiten wir zuerst die Exponentialform eines Vektors her. Es wird dabei zur Vereinfachung davon ausgegangen, dass alle Vektoren $\mathbf{w}, \mathbf{u}, \mathbf{v}$ in der $\mathbf{e}_{12}$ Ebene liegen. Weitere Drehungen können in höheren Dimensionen durch Linearkombinationen von Drehungen in den $\mathbf{e}_{ij}, i\not=j$ Ebenen erreicht werden. Für die Herleitung erweitern wir nun als erstes die Polarform
+Dazu leiten wir zuerst die Exponentialform eines Vektors her. Es wird dabei zur Vereinfachung davon ausgegangen, dass alle Vektoren $\mathbf{w}, \mathbf{u}, \mathbf{v}$ in der $\mathbf{e}_{12}$ Ebene liegen. Weitere Drehungen können in höheren Dimensionen durch Linearkombinationen von Drehungen in den $\mathbf{e}_{ij}, i\not=j$ Ebenen erreicht werden. Für die Herleitung ersetzen wir als erstes in der Polarform
\begin{align}
\mathbf{w} = |\mathbf{w}| \left(\cos(\theta_w) \mathbf{e}_1 + \sin(\theta_w) \mathbf{e}_2\right)
\end{align}
-eines Vektors mit $\mathbf{e}_1^2 = 1$ beim Sinus
+eines Vektors einen Faktor 1 durch $1=\mathbf{e}_1^2$ und erhalten beim Sinus
\begin{align}\label{e1ausklammern}
- \mathbf{w} &= |\mathbf{w}| \left(\cos(\theta_w) \mathbf{e}_1 + \sin(\theta_w) \mathbf{e}_1\mathbf{e}_1\mathbf{e}_2\right),
+ \mathbf{w} &= |\mathbf{w}| \left(\cos(\theta_w) \mathbf{e}_1 + \sin(\theta_w) \mathbf{e}_1\mathbf{e}_1\mathbf{e}_2\right).
\end{align}
-um dann $\mathbf{e}_1$
+In einem zweiten Schritt klammern wir $\mathbf{e}_1$ aus, dies ergibt
\begin{align}
- \mathbf{w} = |\mathbf{w}|\mathbf{e}_1\left(\cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_{12}\right) \label{ExponentialGA}
+ \mathbf{w} = |\mathbf{w}|\mathbf{e}_1\left(\cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_{12}\right). \label{ExponentialGA}
\end{align}
-ausklammern zu können. Die Ähnlichkeit des Klammerausdrucks zu der Eulerschen Formel bei den Komplexen Zahlen ist nun schon gut erkennbar. Versuchen wir nun mithilfe der Reihenentwicklungen
+Die Ähnlichkeit des Klammerausdrucks in der Formel \eqref{ExponentialGA} zu der Eulerschen Formel bei den komplexen Zahlen ist nun schon gut erkennbar. Versuchen wir nun mithilfe der Reihenentwicklungen
\begin{align}
\sin(\theta_w)\mathbf{e}_{12}&=\sum _{n=0}^{\infty }(-1)^{n}{\frac {\theta_w^{2n+1}}{(2n+1)!}}\mathbf{e}_{12} =\theta_w\mathbf{e}_{12}-{\frac {\theta_w^{3}}{3!}}\mathbf{e}_{12}+{\frac {\theta_w^{5}}{5!}}\mathbf{e}_{12}-\cdots \\
\cos(\theta_w)&=\sum _{n=0}^{\infty }(-1)^{n}{\frac {\theta_w^{2n}}{(2n)!}} =1-{\frac {\theta_w^{2}}{2!}}+{\frac {\theta_w^{4}}{4!}}-\cdots
\end{align}
-den Zusammenhang auch hier herzustellen. Verwenden wir jetzt noch die Eigenschaft, dass $\mathbf{e}_{12}^2=-1, \enspace\mathbf{e}_{12}^3=-\mathbf{e}_{12}, \dots$, bei dem Klammerausdruck in Formel \eqref{ExponentialGA}
+diesen Zusammenhang auch hier herzustellen. Setzt man diese beiden Reihenentwicklungen in \eqref{ExponentialGA} ein, erhält man
\begin{align}
- \cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_{12} &= 1+\theta_w\mathbf{e}_{12}-{\frac {\theta_w^{2}}{2!}}-{\frac {\theta_w^{3}}{3!}}\mathbf{e}_{12}+{\frac {\theta_w^{4}}{4!}}+{\frac {\theta_w^{5}}{5!}}\mathbf{e}_{12}-\cdots\\
- &= 1 \mathbf{e}_{12}^0+\theta_w\mathbf{e}_{12}^1+{\frac {\theta_w^{2}}{2!}}\mathbf{e}_{12}^2+{\frac {\theta_w^{3}}{3!}}\mathbf{e}_{12}^3+{\frac {\theta_w^{4}}{4!}}\mathbf{e}_{12}^4+{\frac {\theta_w^{5}}{5!}}\mathbf{e}_{12}^5+\cdots
+ \cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_{12} &= 1+\theta_w\mathbf{e}_{12}-{\frac {\theta_w^{2}}{2!}}-{\frac {\theta_w^{3}}{3!}}\mathbf{e}_{12}+{\frac {\theta_w^{4}}{4!}}+{\frac {\theta_w^{5}}{5!}}\mathbf{e}_{12}-\cdots
+\end{align}
+Dies sieht noch nicht wie eine Exponentialreihe aus, da $\mathbf{e}_{12}$ nur in jedem zweiten Term auftritt. Da aber $\mathbf{e}_{12}=-1$ gibt, erhält man für
+\begin{align}
+ e^{\theta_w\mathbf{e}_{12}} = 1 \mathbf{e}_{12}^0+\theta_w\mathbf{e}_{12}^1+{\frac {\theta_w^{2}}{2!}}\mathbf{e}_{12}^2+{\frac {\theta_w^{3}}{3!}}\mathbf{e}_{12}^3+{\frac {\theta_w^{4}}{4!}}\mathbf{e}_{12}^4+{\frac {\theta_w^{5}}{5!}}\mathbf{e}_{12}^5+\cdots
\label{ExponentialGA2}
\end{align}
-dann sieht man die Übereinstimmung mit der Reihenentwicklung der Exponentialfunktion
+Man sieht, dass die beiden Reihen übereinstimmen. Es folgt somit
+\begin{align}\label{EulerGA}
+ e^{\theta_w \mathbf{e}_{12}} = \cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_{12},
+\end{align}
+es gibt eine Euler-Formel mit $mathbf{e}_{12}$ anstelle der imaginären Einheit $j$.
+
+Wenn man jetzt den Vektor \eqref{ExponentialGA} durch die eulersche Schreibweise
\begin{align}
- &e^{\theta_w\mathbf{e}_{12}}=\sum _{n=0}^{\infty }{\frac {(\theta_w\mathbf{e}_{12})^{n}}{n!}}={\frac {(\theta_w\mathbf{e}_{12})^{0}}{0!}}+{\frac {(\theta_w\mathbf{e}_{12})^{1}}{1!}}+{\frac {(\theta_w\mathbf{e}_{12})^{2}}{2!}}+{\frac {(\theta_w\mathbf{e}_{12})^{3}}{3!}}+\cdots\\
- &\Rightarrow \mathbf{w} = |w|\mathbf{e}_1 e^{\theta_w \mathbf{e}_{12}} = |w|\mathbf{e}_1\left(\cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_{12}\right).
+ \mathbf{w} = |\mathbf{w}|\mathbf{e}_1e^{\theta_w\mathbf{e}_{12}}
\end{align}
-Man kann die Exponentialform des Vektors ähnlich wie die der komplexen Zahlen interpretieren. Der Einheitsvektor $\mathbf{e}_1$ wird um die Länge $|\mathbf{w}|$ gestreckt und um $\theta_w$ gedreht.
-Bei den komplexen Zahlen würden man vom Punkt 1 anstatt $\mathbf{e}_1$ ausgehen.
+ersetzt, kann die Exponentialform des Vektors ähnlich wie die der komplexen Zahlen interpretieren. Der Einheitsvektor $\mathbf{e}_1$ wird um die Länge $|\mathbf{w}|$ gestreckt und um $\theta_w$ gedreht.
\subsubsection{Vektormultiplikation}
-Nun werden wir das Produkt von zwei Vektoren $\mathbf{wu}$
-\begin{align}
+Nun werden wir das Vektorprodukt
+\begin{align} \label{VektorproduktformelGA}
\mathbf{wu} = |\mathbf{w}|\mathbf{e}_1 e^{\theta_w \mathbf{e}_{12}}|\mathbf{u}|\mathbf{e}_1 e^{\theta_u \mathbf{e}_{12}}
\end{align}
-so umformen, dass wir eine bessere Darstellung erhalten. Wir tauschen dafür zuerst beim Vektor $\mathbf{w}$ die Reihenfolge von
-$\mathbf{e}_1$ mit dem Exponentialterm $e^{\theta_w \mathbf{e}_{12}}$, indem wir bei der Gleichung \eqref{e1ausklammern}, anstatt mit $\mathbf{e}_1\mathbf{e}_1\mathbf{e}_2$ mit $\mathbf{e}_2\mathbf{e}_1\mathbf{e}_1$ erweitern
+so umformen, dass wir die Drehung nur durch Exponentialterme beschreiben können. Wir tauschen dafür zuerst beim Vektor $\mathbf{w}$ die Reihenfolge von
+$\mathbf{e}_1$ mit dem Exponentialterm $e^{\theta_w \mathbf{e}_{12}}$, indem wir bei der Gleichung \eqref{e1ausklammern} $1=\mathbf{e}_1^2$ an einer anderen Position
\begin{align}
- \mathbf{w} &= |\mathbf{w}|\left(\cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_2\mathbf{e}_1\right)\mathbf{e}_1\\
- &= |\mathbf{w}|e^{\theta_w \mathbf{e}_{21}}\mathbf{e}_1\\
- &= |\mathbf{w}|e^{-\theta_w \mathbf{e}_{12}}\mathbf{e}_1
+ \mathbf{w} &= |\mathbf{w}|\left(\cos(\theta_w)+ \sin(\theta_w) \mathbf{e}_2\mathbf{e}_1\right)\mathbf{e}_1
+\end{align}
+einsetzten. Mithilfe der Formel \eqref{EulerGA} und dem Wissen, dass $\mathbf{e}_{21}= -\mathbf{e}_{12}$ können wir die Umformung
+\begin{align}
+ |\mathbf{w}|e^{-\theta_w \mathbf{e}_{12}}\mathbf{e}_1
\end{align}
-und umstrukturiert wieder in die Vektorproduktformel einsetzen
+ausführen. Diese wichtige Umstrukturierung können wir wieder in die Vektorproduktformel \eqref{VektorproduktformelGA} einsetzen un erhalten
\begin{align}
- \mathbf{wu} = |\mathbf{w}||\mathbf{u}|e^{-\theta_w \mathbf{e}_{12}}\mathbf{e}_1\mathbf{e}_1 e^{\theta_u \mathbf{e}_{12}}\\
- \mathbf{wu} = |\mathbf{w}||\mathbf{u}|e^{(\theta_u-\theta_w) \mathbf{e}_{12}}.
+ \mathbf{wu} &= |\mathbf{w}||\mathbf{u}|e^{-\theta_w \mathbf{e}_{12}}\mathbf{e}_1\mathbf{e}_1 e^{\theta_u \mathbf{e}_{12}}\\
+ &= |\mathbf{w}||\mathbf{u}|e^{(\theta_u-\theta_w) \mathbf{e}_{12}}.
\end{align}
-Der Term $\mathbf{u}^{-1}\mathbf{w}^{-1}$
+Das inverse Vektorprodukt
\begin{align}
\mathbf{u}^{-1}\mathbf{w}^{-1} = \dfrac{1}{|\mathbf{w}||\mathbf{u}|}e^{(\theta_w-\theta_u) \mathbf{e}_{12}}
\end{align}
-kann durch die selbe Methode zusammengefasst werden.
-Wenn wir den Winkel zwischen den Vektoren $\mathbf{w}$ und $\mathbf{u}$ als $\theta = \theta_w - \theta_u$ definieren erhalten wir
+kann durch die selbe Methode vereinfacht werden.
+Wenn wir den Winkel zwischen den Vektoren $\mathbf{w}$ und $\mathbf{u}$ als $\theta = \theta_w - \theta_u$ definieren erhalten wir als endgültige Form der Vektorprodukte
\begin{align}\label{wuExpo}
- \mathbf{wu} = |\mathbf{w}||\mathbf{u}|e^{-\theta \mathbf{e}_{12}}\\
- \mathbf{u}^{-1}\mathbf{w}^{-1} = \dfrac{1}{|\mathbf{w}||\mathbf{u}|}e^{\theta \mathbf{e}_{12}} \label{wuExpoInv}
+ \mathbf{wu} &= |\mathbf{w}||\mathbf{u}|e^{-\theta \mathbf{e}_{12}}\enspace\text{und}\\
+ \mathbf{u}^{-1}\mathbf{w}^{-1} &= \dfrac{1}{|\mathbf{w}||\mathbf{u}|}e^{\theta \mathbf{e}_{12}} \label{wuExpoInv}.
\end{align}
-die finale Form der Vektorprodukte.
\subsubsection{Umstrukturierte Drehungsgleichung}
Setzten wir nun unsere neuen Erkenntnisse in die Gleichung \eqref{rotGA} ein
\begin{align}