diff options
author | Reto Fritsche <reto.fritsche@ost.ch> | 2021-08-09 23:18:14 +0200 |
---|---|---|
committer | Reto Fritsche <reto.fritsche@ost.ch> | 2021-08-09 23:18:14 +0200 |
commit | 5a229fced6ee10f25060e190c0b08bba048a7617 (patch) | |
tree | 592f07a72dc67d12135564d2497f1b3649fe78eb /buch/papers/erdbeben/teil0.tex | |
parent | scratch ready (diff) | |
parent | Merge branch 'master' of github.com:AndreasFMueller/SeminarMatrizen (diff) | |
download | SeminarMatrizen-5a229fced6ee10f25060e190c0b08bba048a7617.tar.gz SeminarMatrizen-5a229fced6ee10f25060e190c0b08bba048a7617.zip |
Merge remote-tracking branch 'upstream/master' into mceliece
Diffstat (limited to '')
-rw-r--r-- | buch/papers/erdbeben/teil0.tex | 57 |
1 files changed, 29 insertions, 28 deletions
diff --git a/buch/papers/erdbeben/teil0.tex b/buch/papers/erdbeben/teil0.tex index 8ce8ff2..c985713 100644 --- a/buch/papers/erdbeben/teil0.tex +++ b/buch/papers/erdbeben/teil0.tex @@ -23,6 +23,7 @@ Die Masse schwing jedoch in seiner Eigendynamik weiter. Relativbewegung des Bodens kann damit als Auslenkung im Zeitverlauf gemessen werden. In modernen Seismographen wird die Bodenbewegung in alle Richtungen gemessen, sowohl Horizontal als auch Vertikal. Wir konstruieren uns eine einfachere Version eines Seismographen mit eine Gehäuse, an dem zwei Federn und eine Masse befestigt sind. +Der Seismograph ist in Abbildung ~\ref{erdbeben:Seismograph} ersichtlich. Ein Sensor unter der Masse misst die Position, bzw. die Auslenkung der Feder und der Masse. Dies bedeutet, unser Seismograph kann nur in eine Dimension Messwerte aufnehmen. @@ -30,52 +31,52 @@ Dies bedeutet, unser Seismograph kann nur in eine Dimension Messwerte aufnehmen. \begin{center} \includegraphics[width=5cm]{papers/erdbeben/Apperatur} \caption{Aufbau des Seismographen mit Gehäuse, Masse, Federn und Sensor} + \label{erdbeben:Seismograph} \end{center} \end{figure} \subsection{Ziel} Unser Seismograph misst nur die Position der Masse über die Zeit. -Wir wollen jedoch die Beschleunigung $a(t)$ des Boden bzw. die Kraft $f(t)$ welche auf das Gehäuse wirkt bestimmten. -Anhand dieser Beschleunigung bzw. der Krafteinwirkung durch die Bodenbewegung wird später das Bauwerk bemessen. +Wir wollen jedoch die Beschleunigung $a(t)$ des Boden, bzw. die Kraft $f(t)$, welche auf das Gehäuse wirkt, bestimmten. +Anhand dieser Beschleunigung, bzw. der Krafteinwirkung durch die Bodenbewegung, wird später das Bauwerk bemessen. Dies bedeutet, die für uns interessante Grösse $f(t)$ wird nicht durch einen Sensor erfasst. Jedoch können wir durch zweifaches ableiten der Positionsmessung $s(t)$ die Beschleunigung der Masse berechnen. Das heisst: Die Messung ist zweifach Integriert die Kraft $f(t)$ inklusive der Eigendynamik der Masse. -Um die Bewegung der Masse zu berechnen, müssen wir Gleichungen für unser System finden. +Um die Krafteinwirkung der Masse zu berechnen, müssen wir Gleichungen für unser System finden. \subsection{Systemgleichung} -Im Fall unseres Seismographen, kann die Differentialgleichung zweiter Ordnung einer gedämpften Schwingung am harmonischen Oszillator verwendet werden. -Diese lautet: +Im Paper~\cite{erdbeben:mendezmueller} wurde das System gleich definiert und vorgegangen. +Im Fall unseres Seismographen, handelt es sich um ein Feder-Masse-Pendel. +Dieser kann durch die Differentialgleichung zweiter Ordnung einer gedämpften Schwingung am harmonischen Oszillator beschrieben werden. +Die Gleichung lautet: \begin{equation} -m\ddot s + 2k \dot s + Ds = f +m\ddot s + 2k \dot s + Ds = f. \end{equation} -mit den Konstanten $m$ = Masse, $k$ = Dämpfungskonstante und $D$ = Federkonstante. -Da die DGL linear ist, kann sie in die kompaktere und einfachere Matrix-Form umgewandelt werden. Dazu wird die Differentialgleichung zweiter Ordnung substituiert: -\[ {s_1}=s \qquad -{s_2}=\dot s, \qquad\] -Somit entstehen die Gleichungen für die Position $s(t)$ der Masse : +wobei $m$ die Masse, $k$ die Dämpfungskonstante und $D$ die Federkonstante bezeichnet. +Da die Differentialgleichung linear ist, kann sie in die kompaktere und einfachere Matrix-Form umgewandelt werden. +Dazu verwenden wir die Subsitution: +\[
s_1 = s
\qquad \text{und} \qquad
s_2 = \dot s
.
\] +Somit entstehen die Gleichungen für die Position $ \dot s_1(t)$ der Masse : \[ \dot {s_1} = {s_2}\] und -\[ \dot s_2 = -\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \] für die Beschleunigung $a(t)$ der Masse. - +\[ \dot s_2 = -\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \] +für die Beschleunigung $\dot s_2(t)$ der Masse. Diese können wir nun in der Form -\[ {s_3}=-\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \] +\[ f =-\frac{D}{m} {s_1} -\frac{2k}{m} {s_2} + \frac{f} {m} \] auch als Matrix-Vektor-Gleichung darstellen. Dafür wird die Gleichung in die Zustände aufgeteilt. -Die für uns relevanten Zustände sind die Position der Masse, die Geschwindigkeit der Masse und die äussere Beschleunigung des ganzen System. -Dabei muss unterschieden werden, um welche Beschleunigung es sich handelt. -Das System beinhaltet sowohl eine Beschleunigung der Masse, innere Beschleunigung, als auch eine Beschleunigung der ganzen Apparatur, äussere Beschleunigung. -In unserem Fall wird die äusseren Beschleunigung gesucht, da diese der Erdbebenanregung gleich kommt. -\begin{equation} -\frac{d}{dt} \left(\begin{array}{c} {s_1} \\ {s_2} \end{array}\right) = \left( - \begin{array}{ccc} -0 & 1& 0 \\ -- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\ -\end{array}\right) \left(\begin{array}{c} {s_1} \\ {s_2} \\ {s_3} \end{array}\right). -\end{equation} - -Durch Rücksubstituion ergibt sich: +Die für uns relevanten Zustände sind die Position der Masse, die Geschwindigkeit der Masse und die äussere Beschleunigung des ganzen Systems. + +Dabei muss unterschieden werden, um welche Beschleunigung es sich handelt. +Das System beinhaltet sowohl eine Beschleunigung der Masse (innere Beschleunigung) als auch eine Beschleunigung der ganzen Apparatur (äussere Beschleunigung). +In unserem Fall wird die äusseren Beschleunigung gesucht, da diese der Erdbebenanregung gleich kommt. +Dazu wird ein Zustandsvektor definiert: +\[ + \left(\begin{array}{c} {s_1} \\ {s_2} \\ {f} \end{array}\right). + \] +Durch Rücksubstituion ergibt sich uns folgende Systemgleichung in Matrix schreibweise, , wobei $\dot {s_1}= v$ ist: \begin{equation} -\frac{d}{dt} \left(\begin{array}{c} s(t) \\ v(t) \end{array}\right) = \left( +\frac{d}{dt} \left(\begin{array}{c} s(t) \\ v(t) \\ f(t) \end{array}\right) = \left( \begin{array}{ccc} 0 & 1& 0 \\ - \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\ |