diff options
author | JODBaer <JODBaer@github.com> | 2021-08-07 14:34:58 +0200 |
---|---|---|
committer | JODBaer <JODBaer@github.com> | 2021-08-07 14:34:58 +0200 |
commit | 2257ffca3c2ff48af74e5bbfb85b505feef6c1ab (patch) | |
tree | 7e3f85bc6e98a9a9a5d48642d7dd08cd35f4f2af /buch/papers/multiplikation/code/MM | |
parent | Merge pull request #64 from Kuehnee/master (diff) | |
parent | plot-green (diff) | |
download | SeminarMatrizen-2257ffca3c2ff48af74e5bbfb85b505feef6c1ab.tar.gz SeminarMatrizen-2257ffca3c2ff48af74e5bbfb85b505feef6c1ab.zip |
Merge remote-tracking branch 'origin/Baer'
Diffstat (limited to '')
-rwxr-xr-x | buch/papers/multiplikation/code/MM | bin | 26848 -> 26848 bytes | |||
-rwxr-xr-x | buch/papers/multiplikation/code/MM.c | 2 | ||||
-rw-r--r-- | buch/papers/multiplikation/code/MM.py | 109 |
3 files changed, 61 insertions, 50 deletions
diff --git a/buch/papers/multiplikation/code/MM b/buch/papers/multiplikation/code/MM Binary files differindex f07985f..d52dda4 100755 --- a/buch/papers/multiplikation/code/MM +++ b/buch/papers/multiplikation/code/MM diff --git a/buch/papers/multiplikation/code/MM.c b/buch/papers/multiplikation/code/MM.c index 04c4dab..a897d4f 100755 --- a/buch/papers/multiplikation/code/MM.c +++ b/buch/papers/multiplikation/code/MM.c @@ -31,7 +31,7 @@ int main() { run_algo(strassen, "strassen",0);
run_algo(MM, "MM", 0);
- // run_algo(winograd, "winograd", 0);
+ run_algo(winograd, "winograd", 0);
run_algo_cblas(0);
return 0;
diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py index 626b82d..7220ae1 100644 --- a/buch/papers/multiplikation/code/MM.py +++ b/buch/papers/multiplikation/code/MM.py @@ -132,6 +132,10 @@ def winograd2(A, B): return C def test_perfomance(n): + + import mkl + mkl.set_num_threads(1) + t_mm = [] t_mm_dc = [] t_mm_strassen = [] @@ -144,21 +148,21 @@ def test_perfomance(n): # A = np.random.randint(-100, 100,(i, i)) # B = np.random.randint(-100, 100,(i, i)) - start = time.time() - C3 = strassen(A, B) - t_mm_strassen.append(time.time() - start) + # start = time.time() + # C3 = strassen(A, B) + # t_mm_strassen.append(time.time() - start) - start = time.time() - C1 = MM(A, B) - t_mm.append(time.time() - start) + # start = time.time() + # C1 = MM(A, B) + # t_mm.append(time.time() - start) - start = time.time() - C2 = MM_dc(A, B) - t_mm_dc.append(time.time() - start) + # start = time.time() + # C2 = MM_dc(A, B) + # t_mm_dc.append(time.time() - start) - start = time.time() - C4 = winograd2(A, B) - t_wino.append(time.time() - start) + # start = time.time() + # C4 = winograd2(A, B) + # t_wino.append(time.time() - start) start = time.time() C = A@B @@ -169,22 +173,23 @@ def test_perfomance(n): plt.rc('axes', labelsize=23) plt.rc('xtick', labelsize=23) plt.rc('ytick', labelsize=23) - plt.plot(n, t_mm, label='Standard', lw=5) - plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5) - plt.plot(n, t_mm_strassen, label='Strassen', lw=5) - plt.plot(n, t_wino, label='Winograd', lw=5) + # plt.plot(n, t_mm, label='Standard', lw=5) + # plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5) + # plt.plot(n, t_mm_strassen, label='Strassen', lw=5) + # plt.plot(n, t_wino, label='Winograd', lw=5) plt.plot(n, t_np, label='NumPy A@B', lw=5) + # plt.xscale('log', base=2) plt.legend() plt.xlabel("n") plt.ylabel("time (s)") - plt.grid(True) + plt.grid(True, which="both", ls="-") plt.tight_layout() # plt.yscale('log') plt.legend(fontsize=19) - plt.savefig('meas_' + str(max(n))+ '.pdf') - arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np]) - np.savetxt('meas_' + str(max(n))+ '.txt',arr) - return arr + # plt.savefig('meas_' + str(max(n))+ '.pdf') + # arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np]) + # np.savetxt('meas_' + str(max(n))+ '.txt',arr) + return t_np def plot(num): @@ -198,10 +203,11 @@ def plot(num): plt.plot(n, t_mm, label='3 For Loops', lw=5) plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5) plt.plot(n, t_mm_strassen, label='Strassen', lw=5) - # plt.plot(n, t_wino, label='Winograd', lw=5) + plt.plot(n, t_wino, label='Winograd', lw=5) plt.plot(n, t_np, label='NumPy A@B', lw=5) plt.legend() plt.xlabel("n") + # plt.yscale('log', base=10) plt.ylabel("time (s)") plt.grid(True) plt.tight_layout() @@ -211,36 +217,37 @@ def plot(num): return arr def plot_c_res(ave, num): + MM = np.loadtxt("meas/MM.txt", delimiter=',') - # winograd = np.loadtxt("meas/winograd.txt", delimiter=',') + winograd = np.loadtxt("meas/winograd.txt", delimiter=',') blas = np.loadtxt("meas/blas.txt", delimiter=',') MM_dc = np.loadtxt("meas/MM_dc.txt", delimiter=',') strassen = np.loadtxt("meas/strassen.txt", delimiter=',') MM_t = MM[:,0] MM_n = MM[:,1] - MM_t = np.mean(MM_t.reshape(-1,ave),axis=1) - MM_n = np.mean(MM_n.reshape(-1,ave),axis=1) + # MM_t = np.mean(MM_t.reshape(-1,ave),axis=1) + # MM_n = np.mean(MM_n.reshape(-1,ave),axis=1) MM_dc_t = MM_dc[:,0] MM_dc_n = MM_dc[:,1] - MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1) - MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1) + # MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1) + # MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1) strassen_t = strassen[:,0] strassen_n = strassen[:,1] - strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1) - strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1) + # strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1) + # strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1) - # winograd_t = winograd[:,0] - # winograd_n = winograd[:,1] + winograd_t = winograd[:,0] + winograd_n = winograd[:,1] # winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1) # winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1) blas_t = blas[:,0] blas_n = blas[:,1] - blas_t = np.mean(blas_t.reshape(-1,ave),axis=1) - blas_n = np.mean(blas_n.reshape(-1,ave),axis=1) + # blas_t = np.mean(blas_t.reshape(-1,ave),axis=1) + # blas_n = np.mean(blas_n.reshape(-1,ave),axis=1) def func(x, a,b): return b*x**a @@ -254,14 +261,16 @@ def plot_c_res(ave, num): plt.rc('axes', labelsize=23) plt.rc('xtick', labelsize=23) plt.rc('ytick', labelsize=23) - plt.plot(MM_n, MM_t, label='3 For Loops', lw=5) - # plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5) - plt.plot(blas_n, blas_t, label='Blas', lw=5) - plt.plot(strassen_n, strassen_t, label='Strassen', lw=5) - plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5) + plt.loglog(MM_n, MM_t, label='3 For Loops', lw=5) + plt.loglog(winograd_n, winograd_t, label='Winograd MM', lw=5) + plt.loglog(blas_n, blas_t, label='Blas', lw=5) + plt.loglog(strassen_n, strassen_t, label='Strassen', lw=5) + plt.loglog(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5) plt.xlabel("n") + # plt.yscale('log', base=10) + # plt.xscale('log', base=2) plt.ylabel("time (s)") - plt.grid(True) + plt.grid(True, which="both", ls="-") plt.tight_layout() plt.legend(fontsize=19) plt.savefig('c_meas_' + str(num)+ '.pdf') @@ -271,23 +280,25 @@ def plot_c_res(ave, num): # plt.plot(blas_n, func(blas_n, *popt2), 'r-', label='fit MM: a=%5.5f, b=%5.10f' % tuple(popt2)) plt.legend() - + # return [MM_n,winograd_n,blas_n,strassen_n,MM_dc_n] + return [MM_t,winograd_t,blas_t,strassen_t,MM_dc_t] + # test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if __name__ == '__main__': - plot_c_res(1, 4096) + # A = plot_c_res(1, 4096) - # plot(8) - # n = np.logspace(1,10,10,base=2,dtype=(np.int)) + arr = plot(1024) + # n = np.logspace(1,12,12,base=2,dtype=(np.int)) # n = np.arange(1,50,2) - A = np.random.randint(-10, 10, (5,3)) - B = np.random.randint(-10, 10, (3,5)) + # A = np.random.randint(-10, 6, (5,3)) + # B = np.random.randint(-10, 6, (3,5)) - C = winograd2(A, B) - C_test = A@B - print(C) - print(C_test) + # C = winograd2(A, B) + # C_test = A@B + # print(C) + # print(C_test) # print(np.equal(C, C_test)) # t_np = test_perfomance(n) |