diff options
author | Nunigan <m2schmid@hsr.ch> | 2021-08-05 18:04:32 +0200 |
---|---|---|
committer | Nunigan <m2schmid@hsr.ch> | 2021-08-05 18:04:32 +0200 |
commit | e948351c11835cb6a19abe394ffb61219884b96a (patch) | |
tree | 8df880e649095844dd69fd9676dc7a63ad57ebd4 /buch/papers/multiplikation/problemstellung.tex | |
parent | Merge branch 'master' of https://github.com/AndreasFMueller/SeminarMatrizen (diff) | |
download | SeminarMatrizen-e948351c11835cb6a19abe394ffb61219884b96a.tar.gz SeminarMatrizen-e948351c11835cb6a19abe394ffb61219884b96a.zip |
update paper
Diffstat (limited to '')
-rwxr-xr-x | buch/papers/multiplikation/problemstellung.tex | 135 |
1 files changed, 74 insertions, 61 deletions
diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex index cd5aaaa..c6fd10e 100755 --- a/buch/papers/multiplikation/problemstellung.tex +++ b/buch/papers/multiplikation/problemstellung.tex @@ -5,13 +5,15 @@ % \section{Problemstellung} \rhead{Problemstellung} -Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung. +Wegen der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung. Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen. -Gezielt werden auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen. +Gezielt wird auf Algorithmen eingegange, welche das Problem schneller als der Standard Algorithmus l\"osen. \subsection{Big $\mathcal{O}$ Notation} -Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}. +\label{muliplikation:sec:bigo} +Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus in Abhänigkeit zur Inputgrösse \cite{multiplikation:bigo}. $f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$. +Als Beispiel: benötigt eine Funktion $g$, $\mathcal{O}\left(n+n^2 \right)$ Multiplikationen so wächst $f$ mit $\mathcal{O}\left(n^2 \right)$ nicht wesentlich schneller als $g$. Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \begin{itemize} \item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt @@ -23,7 +25,7 @@ Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \item usw. \end{itemize} -In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden. +In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden. \begin{figure} \center @@ -34,77 +36,88 @@ In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufze \subsubsection{Beispiel Algorithmen} -Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen. +Es folgen einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen. + +\begin{minipage}{0.4\textwidth} + \begin{algorithm}[H]\footnotesize\caption{} + \label{multiplikation:alg:b1} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \Function{B1}{$a, b$} + \State \textbf{return} $a+b$ + \EndFunction + \end{algorithmic} + \end{algorithm} + + \begin{algorithm}[H]\footnotesize\caption{} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \label{multiplikation:alg:linear} + \Function{L}{$\mathbf{a}, \mathbf{b}$,n} + \State $ sum \gets 0$ + \For{$i = 0,1,2 \dots,n$} + \State $ sum \gets sum + A[i] \cdot B[i] $ + \EndFor + + \State \textbf{return} $sum$ + + \EndFunction + \end{algorithmic} + \end{algorithm} +\end{minipage} +\hspace{2cm} +\begin{minipage}{0.4\textwidth} + + \begin{algorithm}[H]\footnotesize\caption{} + \label{multiplikation:alg:b2} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \Function{B2}{$a, b$} + \State $ x \gets a+b $ + \State $ y \gets a \cdot b $ + \State \textbf{return} $x+y$ + \EndFunction + \end{algorithmic} + \end{algorithm} + + + \begin{algorithm}[H]\footnotesize\caption{} + \label{multiplikation:alg:q1} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \Function{Q}{$\mathbf{A}, \mathbf{B}$,n} + \State $ sum \gets 0$ + \For{$i = 0,1,2 \dots,n$} + \For{$j = 0,1,2 \dots,n$} + \State $ sum \gets sum + A[i] \cdot B[j] $ + \EndFor + \EndFor + \State \textbf{return} $sum$ + \EndFunction + \end{algorithmic} + \end{algorithm} + +\end{minipage} + \paragraph{Beschr\"ankter Algorithmus} Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit. -\begin{algorithm}\footnotesize\caption{} - \label{multiplikation:alg:b1} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \Function{B1}{$a, b$} - \State \textbf{return} $a+b$ - \EndFunction - \end{algorithmic} -\end{algorithm} + Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$. -\begin{algorithm}\footnotesize\caption{} - \label{multiplikation:alg:b2} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \Function{B2}{$a, b$} - \State $ x \gets a+b $ - \State $ y \gets a \cdot b $ - \State \textbf{return} $x+y$ - \EndFunction - \end{algorithmic} -\end{algorithm} + \paragraph{Linearer Algorithmus} -Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares Verhalten. +Der Algorithmus \ref{multiplikation:alg:linear} hat ein lineares Verhalten. Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$. -\begin{algorithm}\footnotesize\caption{} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \label{multiplikation:alg:l1} - \Function{L}{$\mathbf{a}, \mathbf{b}$,n} - \State $ sum \gets 0$ - \For{$i = 0,1,2 \dots,n$} - \State $ sum \gets sum + A[i] \cdot B[i] $ - \EndFor - - \State \textbf{return} $sum$ - - \EndFunction - \end{algorithmic} -\end{algorithm} + \paragraph{Quadratischer Algorithmus} -Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. +Der Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchglaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. - - -\begin{algorithm}[H]\footnotesize\caption{} - \label{multiplikation:alg:q1} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \Function{Q}{$\mathbf{A}, \mathbf{B}$,n} - \State $ sum \gets 0$ - \For{$i = 0,1,2 \dots,n$} - \For{$j = 0,1,2 \dots,n$} - \State $ sum \gets sum + A[i] \cdot B[j] $ - \EndFor - \EndFor - \State \textbf{return} $sum$ - \EndFunction - \end{algorithmic} -\end{algorithm} - - |