diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-06-05 10:11:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-06-05 10:11:01 +0200 |
commit | 3a240375b7b8b1b10e5e455abc45369f55a6a31f (patch) | |
tree | 19bceb2715ed82b11100df138855b0ce843278cf /buch/papers/reedsolomon/codebsp.tex | |
parent | add test problems (diff) | |
parent | Merge branch 'Steiner' (diff) | |
download | SeminarMatrizen-3a240375b7b8b1b10e5e455abc45369f55a6a31f.tar.gz SeminarMatrizen-3a240375b7b8b1b10e5e455abc45369f55a6a31f.zip |
Merge pull request #22 from JODBaer/master
Steiner progress to pull
Diffstat (limited to '')
-rw-r--r-- | buch/papers/reedsolomon/codebsp.tex | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/buch/papers/reedsolomon/codebsp.tex b/buch/papers/reedsolomon/codebsp.tex new file mode 100644 index 0000000..5b67c43 --- /dev/null +++ b/buch/papers/reedsolomon/codebsp.tex @@ -0,0 +1,139 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Codierung eines Beispiels +\label{reedsolomon:section:codebsp}} +\rhead{Koerper Festlegen} + +Um die Funktionsweise eines Reed-Solomon-Codes besser zu verstehen werden wir die einzelnen Probleme und ihre Lösungen anhand eines Beispiels betrachten. +Da wir in Endlichen Körpern Rechnen werden wir zuerst solch ein Körper festlegen. Dabei müssen wir die \textcolor{red}{Definition 4.6} berücksichtigen, die besagt, dass nur Primzahlen für endliche Körper in Frage kommen. +Wir legen für unser Beispiel den endlichen Körper $q = 11$ fest. +Alle folgenden Berechnungen wurden mit den beiden Restetabellen \textcolor{red}{xx} und \textcolor{red}{yy} durchgeführt. +Aus den Tabellen folgt auch, dass uns nur die Zahlen \[\mathbb{F}_{11} = \{0,1,2,3,4,5,6,7,8,9,10\}\] zur Verfügung stehen. + +% die beiden Restetabellen von F_11 +%\input{papers/reedsolomon/restetabelle1} +%\input{papers/reedsolomon/restetabelle2} + +Die grösse des endlichen Körpers legt auch fest, wie gross unsere Nachricht $n$ bestehend aus Nutzdatenteil und Fehlerkorrekturteil sein kann und beträgt in unserem Beispiel +\[ +n = q - 1 = 10 \text{ Zahlen}. +\] + +Im nächsten Schritt bestimmen wir, wie viele Fehler $t$ maximal während der Übertragung auftreten dürfen, damit wir sie noch korrigieren können. +Unser Beispielcode sollte in der Lage sein +\[ +t = 2 +\] +Fehlerstellen korrigieren zu können. + +Die Grösse des Nutzdatenteils hängt von der Grösse der Nachricht sowie der Anzahl der Fehlerkorrekturstellen. Je robuster der Code sein muss, desto weniger Platz für Nutzdaten $k$ bleibt in der Nachricht übrig. +Bei maximal 2 Fehler können wir noch +\[ +k = n - 2t = 6\text{ Zahlen} +\] +übertragen. + +Zusammenfassend haben wir einen Codeblock mit der Länge von 10 Zahlen definiert, der 6 Zahlen als Nutzlast beinhaltet und in der Lage ist aus 2 fehlerhafte Stellen im Block die ursprünglichen Nutzdaten rekonstruieren kann. Zudem werden wir im weiteren feststellen, dass dieser Code maximal 4 Fehlerstellen erkennen, diese aber nicht rekonstruieren kann. + +Wir legen nun die Nachricht +\[ +m = [0,0,0,0,4,7,2,5,8,1] +\] +fest, die wir gerne an einen Empfänger übertragen möchten, wobei die vorderen vier Nullstellen für die Fehlerkorrektur zuständig sind. +Die Nachricht können wir auch als Polynom +\[ +m(X) = 4X^5 + 7X^4 + 2X^3 + 5X^2 + 8X + 1 +\] +darstellen. + +\subsection{Der Ansatz der diskreten Fouriertransformation + \label{reedsolomon:subsection:diskFT}} + +In einem vorherigen Kapitel (???) haben wir schon einmal die diskrete Fouriertransformation zum Codieren einer Nachricht verwendet. In den endlichen Körpern wird dies jedoch nicht gelingen, da die Eulerische Zahl $\mathrm{e}$ in $\mathbb{F}_{11}$ nicht existiert. +Wir suchen also eine Zahl $a^i$, die in endlichen Körpern existiert und den gesamten Zahlenbereich von $\mathbb{F}_{11}$ abdecken kann. +Dazu schreiben wir +\[ +\mathbb{F}_{11} = \{0,1,2,3,4,5,6,7,8,9,10\} +\] +um in +\[ +\mathbb{Z}_{11}\setminus\{0\} = \{a^0, a^1, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9\}. +\] + +Wenn wir alle möglichen Werte für $a$ einsetzen, also + +%\begin{align} +%a = 0 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0\} \\ +%a = 1 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\} \\ +%a = 2 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\} \\ +%a = 3 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 3, 9, 5, 4, 1, 3, 9, 5, 4\} \\ +%a = 4 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 4, 5, 9, 3, 1, 4, 5, 9, 3\} \\ +%a = 5 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 5, 3, 4, 9, 1, 5, 3, 4, 9\} \\ +%a = 6 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 6, 3, 7, 9, 10, 5, 8, 4, 2\} \\ +%a = 7 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 7, 5, 2, 3, 10, 4, 6, 9, 8\} \\ +%a = 8 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 8, 9, 6, 4, 10, 3, 2, 5, 7\} \\ +%a = 9 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 9, 4, 3, 5, 1, 9, 4, 3, 5\} \\ +%a = 10 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 10, 1, 10, 1, 10, 1, 10, 1, 10\} +%\end{align} + +\begin{center} +\begin{tabular}{c r c l} +%$a = 0 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}$ \\ +$a = 1 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\}$ \\ +$a = 2 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\}$ \\ +$a = 3 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 3, 9, 5, 4, 1, 3, 9, 5, 4\}$ \\ +$a = 4 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 4, 5, 9, 3, 1, 4, 5, 9, 3\}$ \\ +$a = 5 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 5, 3, 4, 9, 1, 5, 3, 4, 9\}$ \\ +$a = 6 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 6, 3, 7, 9, 10, 5, 8, 4, 2\}$ \\ +$a = 7 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 7, 5, 2, 3, 10, 4, 6, 9, 8\}$ \\ +$a = 8 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 8, 9, 6, 4, 10, 3, 2, 5, 7\}$ \\ +$a = 9 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 9, 4, 3, 5, 1, 9, 4, 3, 5\}$ \\ +$a = 10 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 10, 1, 10, 1, 10, 1, 10, 1, 10\}$ +\end{tabular} +\end{center} + +so fällt uns auf, dass die Zahlen $2,6,7,8$ tatsächlich den gesamten Zahlenraum von $\mathbb{F}_{11}$ abbilden. Solche Zahlen werden \em Primitive Einheitswurzel \em genannt. +Für das Beispiel wählen wir die Zahl $a^i = 8$. +Damit wir unsere Nachricht codieren können, müssen wir $8^i$ in $m(X)$ einsetzen. + +\begin{center} + \begin{tabular}{c} + $m(8^0) = 4 \cdot 1 + 7 \cdot 1 + 2 \cdot 1 + 5 \cdot 1 + 8 \cdot 1 + 1 = 5$ \\ + $m(8^1) = 4 \cdot 8 + 7 \cdot 8 + 2 \cdot 8 + 5 \cdot 8 + 8 \cdot 8 + 1 = 3$ \\ + \vdots + \end{tabular} +\end{center} + +Für eine elegantere Formulierung stellen wir das ganze als Matrix dar, wobei $m$ unser Nachrichtenvektor, $A$ die Transformationsmatrix und $v$ unser Übertragungsvektor ist. + +\[ +v = A \cdot m \qquad \Rightarrow \qquad v = \begin{pmatrix} + 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\ + 8^0& 8^1& 8^2& 8^3& 8^4& 8^5& 8^6& 8^7& 8^8& 8^9\\ + 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}& 8^{12}& 8^{14}& 8^{16}& 8^{18}\\ + 8^0& 8^3& 8^6& 8^9& 8^{12}& 8^{15}& 8^{18}& 8^{21}& 8^{24}& 8^{27}\\ + 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}& 8^{24}& 8^{28}& 8^{32}& 8^{36}\\ + 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}& 8^{30}& 8^{35}& 8^{40}& 8^{45}\\ + 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}& 8^{36}& 8^{42}& 8^{48}& 8^{54}\\ + 8^0& 8^7& 8^{14}& 8^{21}& 8^{28}& 8^{35}& 8^{42}& 8^{49}& 8^{56}& 8^{63}\\ + 8^0& 8^8& 8^{16}& 8^{24}& 8^{32}& 8^{40}& 8^{48}& 8^{56}& 8^{64}& 8^{72}\\ + 8^0& 8^9& 8^{18}& 8^{27}& 8^{36}& 8^{45}& 8^{54}& 8^{63}& 8^{72}& 8^{81}\\ +\end{pmatrix} +\cdot +\begin{pmatrix} + 1 \\ 8 \\ 5 \\ 2 \\ 7 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ +\end{pmatrix} +\] + +Somit bekommen wir für unseren Übertragungsvektor +\[ +v = [5,3,6,5,2,10,2,7,10,4], +\] +den wir jetzt über einen beliebigen Nachrichtenkanal versenden können. + +\textbf{NOTES} + +warum wird 0 weggelassen? |