diff options
author | michael-OST <75078383+michael-OST@users.noreply.github.com> | 2021-05-18 18:29:59 +0200 |
---|---|---|
committer | michael-OST <75078383+michael-OST@users.noreply.github.com> | 2021-05-18 18:29:59 +0200 |
commit | 55fc006b2133da4f79eb6eb5179d584c130824a2 (patch) | |
tree | 53b9da98069c552a6ea8310913efcbd839c8fbed /buch/papers/reedsolomon | |
parent | update of codebsp started, restetabelle 1&2 created (diff) | |
download | SeminarMatrizen-55fc006b2133da4f79eb6eb5179d584c130824a2.tar.gz SeminarMatrizen-55fc006b2133da4f79eb6eb5179d584c130824a2.zip |
updated codebsp.tex, created decohnefehler.tex (with blindtext)
Diffstat (limited to '')
-rw-r--r-- | buch/papers/reedsolomon/codebsp.tex | 174 | ||||
-rw-r--r-- | buch/papers/reedsolomon/decohnefehler.tex | 40 |
2 files changed, 161 insertions, 53 deletions
diff --git a/buch/papers/reedsolomon/codebsp.tex b/buch/papers/reedsolomon/codebsp.tex index e9359f9..5b67c43 100644 --- a/buch/papers/reedsolomon/codebsp.tex +++ b/buch/papers/reedsolomon/codebsp.tex @@ -11,61 +11,129 @@ Um die Funktionsweise eines Reed-Solomon-Codes besser zu verstehen werden wir di Da wir in Endlichen Körpern Rechnen werden wir zuerst solch ein Körper festlegen. Dabei müssen wir die \textcolor{red}{Definition 4.6} berücksichtigen, die besagt, dass nur Primzahlen für endliche Körper in Frage kommen. Wir legen für unser Beispiel den endlichen Körper $q = 11$ fest. Alle folgenden Berechnungen wurden mit den beiden Restetabellen \textcolor{red}{xx} und \textcolor{red}{yy} durchgeführt. +Aus den Tabellen folgt auch, dass uns nur die Zahlen \[\mathbb{F}_{11} = \{0,1,2,3,4,5,6,7,8,9,10\}\] zur Verfügung stehen. % die beiden Restetabellen von F_11 %\input{papers/reedsolomon/restetabelle1} %\input{papers/reedsolomon/restetabelle2} - - - - -\textbf{DUMP} - -Da Körper laut der \textcolor{red}{Definition 4.6} eine Primzahl sein muss, - - -Dieser Körper sollte jedoch über eine nullteilerfreie Restetabelle verfügen. Somit kommen nur Primzahlen als Körper in frage. - - - Für das Beispiel wählen wir die Zahl $11$. - - uns zu aller erst auf ein sochen Körper festlegen. - -Um die Funktionsweise eines Reed-Solomon-Codes besser zu verstehen werden wir dies anhand eines Beispiels betrachten. - -Um die Nachfolgende Rechenwege besser zu verstehen, werden wir die einzelnen Rechenschritte anhand eines Beispiels betrachten. - - - - -Als erstes muss festgelegt werden, in welchem endlichen Körper gerechnet werden soll. -Da die Restetabelle eines Körpers nullteilerfrei sein soll, kommen so nur Primzahlen in Frage. -Für das Beispiel verwenden wir den Körper $\mathbb{F}_{11}$. So wählen wir - - -$q = 11$ - - -und beinhaltet die Zahlen - - -$Z_{11} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$ - -\subsection{De finibus bonorum et malorum -\label{reedsolomon:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - +Die grösse des endlichen Körpers legt auch fest, wie gross unsere Nachricht $n$ bestehend aus Nutzdatenteil und Fehlerkorrekturteil sein kann und beträgt in unserem Beispiel +\[ +n = q - 1 = 10 \text{ Zahlen}. +\] + +Im nächsten Schritt bestimmen wir, wie viele Fehler $t$ maximal während der Übertragung auftreten dürfen, damit wir sie noch korrigieren können. +Unser Beispielcode sollte in der Lage sein +\[ +t = 2 +\] +Fehlerstellen korrigieren zu können. + +Die Grösse des Nutzdatenteils hängt von der Grösse der Nachricht sowie der Anzahl der Fehlerkorrekturstellen. Je robuster der Code sein muss, desto weniger Platz für Nutzdaten $k$ bleibt in der Nachricht übrig. +Bei maximal 2 Fehler können wir noch +\[ +k = n - 2t = 6\text{ Zahlen} +\] +übertragen. + +Zusammenfassend haben wir einen Codeblock mit der Länge von 10 Zahlen definiert, der 6 Zahlen als Nutzlast beinhaltet und in der Lage ist aus 2 fehlerhafte Stellen im Block die ursprünglichen Nutzdaten rekonstruieren kann. Zudem werden wir im weiteren feststellen, dass dieser Code maximal 4 Fehlerstellen erkennen, diese aber nicht rekonstruieren kann. + +Wir legen nun die Nachricht +\[ +m = [0,0,0,0,4,7,2,5,8,1] +\] +fest, die wir gerne an einen Empfänger übertragen möchten, wobei die vorderen vier Nullstellen für die Fehlerkorrektur zuständig sind. +Die Nachricht können wir auch als Polynom +\[ +m(X) = 4X^5 + 7X^4 + 2X^3 + 5X^2 + 8X + 1 +\] +darstellen. + +\subsection{Der Ansatz der diskreten Fouriertransformation + \label{reedsolomon:subsection:diskFT}} + +In einem vorherigen Kapitel (???) haben wir schon einmal die diskrete Fouriertransformation zum Codieren einer Nachricht verwendet. In den endlichen Körpern wird dies jedoch nicht gelingen, da die Eulerische Zahl $\mathrm{e}$ in $\mathbb{F}_{11}$ nicht existiert. +Wir suchen also eine Zahl $a^i$, die in endlichen Körpern existiert und den gesamten Zahlenbereich von $\mathbb{F}_{11}$ abdecken kann. +Dazu schreiben wir +\[ +\mathbb{F}_{11} = \{0,1,2,3,4,5,6,7,8,9,10\} +\] +um in +\[ +\mathbb{Z}_{11}\setminus\{0\} = \{a^0, a^1, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9\}. +\] + +Wenn wir alle möglichen Werte für $a$ einsetzen, also + +%\begin{align} +%a = 0 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0\} \\ +%a = 1 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\} \\ +%a = 2 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\} \\ +%a = 3 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 3, 9, 5, 4, 1, 3, 9, 5, 4\} \\ +%a = 4 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 4, 5, 9, 3, 1, 4, 5, 9, 3\} \\ +%a = 5 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 5, 3, 4, 9, 1, 5, 3, 4, 9\} \\ +%a = 6 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 6, 3, 7, 9, 10, 5, 8, 4, 2\} \\ +%a = 7 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 7, 5, 2, 3, 10, 4, 6, 9, 8\} \\ +%a = 8 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 8, 9, 6, 4, 10, 3, 2, 5, 7\} \\ +%a = 9 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 9, 4, 3, 5, 1, 9, 4, 3, 5\} \\ +%a = 10 : \qquad \mathbb{Z}_{11}\setminus\{0\} = \{1, 10, 1, 10, 1, 10, 1, 10, 1, 10\} +%\end{align} + +\begin{center} +\begin{tabular}{c r c l} +%$a = 0 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}$ \\ +$a = 1 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\}$ \\ +$a = 2 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\}$ \\ +$a = 3 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 3, 9, 5, 4, 1, 3, 9, 5, 4\}$ \\ +$a = 4 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 4, 5, 9, 3, 1, 4, 5, 9, 3\}$ \\ +$a = 5 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 5, 3, 4, 9, 1, 5, 3, 4, 9\}$ \\ +$a = 6 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 6, 3, 7, 9, 10, 5, 8, 4, 2\}$ \\ +$a = 7 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 7, 5, 2, 3, 10, 4, 6, 9, 8\}$ \\ +$a = 8 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 8, 9, 6, 4, 10, 3, 2, 5, 7\}$ \\ +$a = 9 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 9, 4, 3, 5, 1, 9, 4, 3, 5\}$ \\ +$a = 10 :$& $\qquad \mathbb{Z}_{11}\setminus\{0\}$ &$=$& $\{1, 10, 1, 10, 1, 10, 1, 10, 1, 10\}$ +\end{tabular} +\end{center} + +so fällt uns auf, dass die Zahlen $2,6,7,8$ tatsächlich den gesamten Zahlenraum von $\mathbb{F}_{11}$ abbilden. Solche Zahlen werden \em Primitive Einheitswurzel \em genannt. +Für das Beispiel wählen wir die Zahl $a^i = 8$. +Damit wir unsere Nachricht codieren können, müssen wir $8^i$ in $m(X)$ einsetzen. + +\begin{center} + \begin{tabular}{c} + $m(8^0) = 4 \cdot 1 + 7 \cdot 1 + 2 \cdot 1 + 5 \cdot 1 + 8 \cdot 1 + 1 = 5$ \\ + $m(8^1) = 4 \cdot 8 + 7 \cdot 8 + 2 \cdot 8 + 5 \cdot 8 + 8 \cdot 8 + 1 = 3$ \\ + \vdots + \end{tabular} +\end{center} + +Für eine elegantere Formulierung stellen wir das ganze als Matrix dar, wobei $m$ unser Nachrichtenvektor, $A$ die Transformationsmatrix und $v$ unser Übertragungsvektor ist. + +\[ +v = A \cdot m \qquad \Rightarrow \qquad v = \begin{pmatrix} + 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\ + 8^0& 8^1& 8^2& 8^3& 8^4& 8^5& 8^6& 8^7& 8^8& 8^9\\ + 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}& 8^{12}& 8^{14}& 8^{16}& 8^{18}\\ + 8^0& 8^3& 8^6& 8^9& 8^{12}& 8^{15}& 8^{18}& 8^{21}& 8^{24}& 8^{27}\\ + 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}& 8^{24}& 8^{28}& 8^{32}& 8^{36}\\ + 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}& 8^{30}& 8^{35}& 8^{40}& 8^{45}\\ + 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}& 8^{36}& 8^{42}& 8^{48}& 8^{54}\\ + 8^0& 8^7& 8^{14}& 8^{21}& 8^{28}& 8^{35}& 8^{42}& 8^{49}& 8^{56}& 8^{63}\\ + 8^0& 8^8& 8^{16}& 8^{24}& 8^{32}& 8^{40}& 8^{48}& 8^{56}& 8^{64}& 8^{72}\\ + 8^0& 8^9& 8^{18}& 8^{27}& 8^{36}& 8^{45}& 8^{54}& 8^{63}& 8^{72}& 8^{81}\\ +\end{pmatrix} +\cdot +\begin{pmatrix} + 1 \\ 8 \\ 5 \\ 2 \\ 7 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ +\end{pmatrix} +\] + +Somit bekommen wir für unseren Übertragungsvektor +\[ +v = [5,3,6,5,2,10,2,7,10,4], +\] +den wir jetzt über einen beliebigen Nachrichtenkanal versenden können. + +\textbf{NOTES} + +warum wird 0 weggelassen? diff --git a/buch/papers/reedsolomon/decohnefehler.tex b/buch/papers/reedsolomon/decohnefehler.tex new file mode 100644 index 0000000..832d63f --- /dev/null +++ b/buch/papers/reedsolomon/decohnefehler.tex @@ -0,0 +1,40 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Decodierung ohne Fehler +\label{reedsolomon:section:decohnefehler}} +\rhead{Teil 3} +Sed ut perspiciatis unde omnis iste natus error sit voluptatem +accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +quae ab illo inventore veritatis et quasi architecto beatae vitae +dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit +aspernatur aut odit aut fugit, sed quia consequuntur magni dolores +eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam +est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci +velit, sed quia non numquam eius modi tempora incidunt ut labore +et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima +veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, +nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure +reprehenderit qui in ea voluptate velit esse quam nihil molestiae +consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla +pariatur? + +\subsection{De finibus bonorum et malorum +\label{reedsolomon:subsection:malorum}} +At vero eos et accusamus et iusto odio dignissimos ducimus qui +blanditiis praesentium voluptatum deleniti atque corrupti quos +dolores et quas molestias excepturi sint occaecati cupiditate non +provident, similique sunt in culpa qui officia deserunt mollitia +animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis +est et expedita distinctio. Nam libero tempore, cum soluta nobis +est eligendi optio cumque nihil impedit quo minus id quod maxime +placeat facere possimus, omnis voluptas assumenda est, omnis dolor +repellendus. Temporibus autem quibusdam et aut officiis debitis aut +rerum necessitatibus saepe eveniet ut et voluptates repudiandae +sint et molestiae non recusandae. Itaque earum rerum hic tenetur a +sapiente delectus, ut aut reiciendis voluptatibus maiores alias +consequatur aut perferendis doloribus asperiores repellat. + + |