aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/Einleitung.tex
diff options
context:
space:
mode:
authorUser-PC\User <thomas.reichlin@ost.ch>2021-05-05 14:09:44 +0200
committerUser-PC\User <thomas.reichlin@ost.ch>2021-05-05 14:09:44 +0200
commit8dc8c7a998d5a2862df90adc8b45d025e692d2d1 (patch)
tree0f15753560d355a43adb7fdf2012ef5c02cc610e /buch/papers/spannung/Einleitung.tex
parenttypos (diff)
downloadSeminarMatrizen-8dc8c7a998d5a2862df90adc8b45d025e692d2d1.tar.gz
SeminarMatrizen-8dc8c7a998d5a2862df90adc8b45d025e692d2d1.zip
Arbeiten am Kapitel, zur Probe, weiteren Zusammenarbeit, sodass Roy Seitz es einsehen könnte
Diffstat (limited to '')
-rw-r--r--buch/papers/spannung/Einleitung.tex91
1 files changed, 91 insertions, 0 deletions
diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex
new file mode 100644
index 0000000..17ca1c9
--- /dev/null
+++ b/buch/papers/spannung/Einleitung.tex
@@ -0,0 +1,91 @@
+\section{Einleitung\label{spannung:section:Einleitung}}
+In diesem Kapitel geht es darum die Matrix im dreidimensionalen Spannungszustand genauer zu untersuchen.
+In der Geotechnik wendet man solche Matrizen an, um Spannungen im Boden zu berechnen.
+Mit diesen Grundlagen dimensioniert man beispielsweise Böschungen, Fundationen, Dämme und Tunnels.
+Ebenfalls benötigt man diese Matrix, um aus Versuchen Kennzahlen über den anstehenden Boden zu gewinnen.
+Besonderes Augenmerk liegt dabei auf dem Oedometer - Versuch.
+
+Bei dieser Untersuchung der zugehörigen Berechnungen hat man es mit Vektoren, Matrizen und Tensoren zu tun.
+Um die mathematische Untersuchung vorzunehmen, beschäftigt man sich zuerst mit den spezifischen Gegebenheiten und Voraussetzungen.
+Ebenfalls gilt es ein paar wichtige Begriffe und deren mathematisches Zeichen einzuführen,
+damit sich den Berechnungen schlüssig folgen lässt.
+
+In diesem Kapitel hat man es insbesondere mit Spannungen und Dehnungen zu tun.
+Mit einer Spannung ist hier jedoch keine elektrische Spannung gemeint,
+sondern eine Kraft geteilt durch Fläche.
+
+\section{Einführung wichtige Begriffe\label{spannung:section:Wichtige Begriffe}}
+\[
+\l
+=
+Ausgangslänge\enspace[m]
+\]
+\[
+\Delta l
+=
+Längenänderung\enspacenach\enspaceKraftauftrag\enspace[m]
+\]
+\[
+\varepsilon
+=
+Dehnung\enspace[-]
+\]
+\[
+\sigma
+=
+Spannung\enspace[kPa]
+\]
+\[
+E
+=
+Elastizitätsmodul
+\]
+\[
+F
+=
+Kraft\enspace[kN]
+\]
+\[
+A
+=
+Fläche\enspace[m^2]
+\]
+\[
+t
+=
+Tiefe\enspace[m]
+\]
+\[
+s
+=
+Setzung,\enspaceAbsenkung\enspace[m]
+\]
+
+Beziehungen
+\[
+\varepsilon
+=
+\frac{\Delta l}{l_0}
+\]
+\[
+\varepsilon_q
+=
+\frac{\Delta b}{l_0}
+=
+\varepsilon_\upsilon
+\]
+\[
+\sigma
+=
+\frac{N}{A}
+\]
+\[
+N
+=
+\int_{A} \sigma \dA
+\]
+\[
+\varepsilon^{\prime}
+=
+\frac{1}{l_0}\]
+