aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/teil2.tex
diff options
context:
space:
mode:
authorfabioviecelli <80270098+fabioviecelli@users.noreply.github.com>2021-09-11 10:58:18 +0200
committerfabioviecelli <80270098+fabioviecelli@users.noreply.github.com>2021-09-11 10:58:18 +0200
commit161819cca8037d3d0cb364705aa8d1dc735c0209 (patch)
tree56fc080c3a9241705490408883bb6ea532439235 /buch/papers/spannung/teil2.tex
parentUpdate Teil_Fabio.tex (diff)
parentadd combined images (diff)
downloadSeminarMatrizen-161819cca8037d3d0cb364705aa8d1dc735c0209.tar.gz
SeminarMatrizen-161819cca8037d3d0cb364705aa8d1dc735c0209.zip
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r--buch/papers/spannung/teil2.tex33
1 files changed, 24 insertions, 9 deletions
diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex
index ddd591f..fec0120 100644
--- a/buch/papers/spannung/teil2.tex
+++ b/buch/papers/spannung/teil2.tex
@@ -8,13 +8,13 @@ Durch komplexe Spannungsausbreitungen im Boden entstehen im 3D-Spannungszustand
\label{fig:infinitesimalerWuerfel}
\end{figure}
Ein Tensor 0.~Stufe, sprich ein Skalar, kann lediglich den 1D-Spannungszustand beschreiben.
-Um den 3D-Spannungszustandes als ein mathematisches Objekt darstellen zu können, wird ein Tensor 2.~Stufe, sprich eine Matrix, eingesetzt.
+Um den 3D-Spannungszustand als ein mathematisches Objekt darstellen zu können, wird ein Tensor 2.~Stufe, sprich eine Matrix, eingesetzt.
Die Spannungen sind durch die zwei Indizes
\(
i, j\in\left\{1, 2, 3\right\}
\)
definiert.
-Daher ergeben sich die neun Spannungen.
+Daher ergeben sich die $9$ Spannungen.
Die nachfolgenden Zusammenhänge sind in \cite{spannung:Voigtsche-Notation} beschrieben.
Dieser Spannungstensor kann schliesslich mit $3^2$ Einträgen als $3\times3$ Matrix mit
\[
@@ -48,7 +48,7 @@ Der Dehnungstensor ist ebenfalls ein Tensor 2.~Stufe und kann somit auch als $3\
\]
dargestellt werden und beschreibt den gesamten Dehnungszustand.
-Der Spannungs- und Dehnungstensor 2.~Stufe kann je in einen Tensor 1.~Stufe überführt werden, welches ein Spaltenvektor ist.
+Der Spannungs- und Dehnungstensor 2.~Stufe kann je in einen Tensor 1.~Stufe überführt werden, welcher ein Spaltenvektor ist.
Man darf Zeile um Zeile in eine Spalte notieren, sodass es einen Spaltenvektor ergibt.
So ergibt sich der Spannungsvektor
@@ -114,8 +114,8 @@ Dieser ist im 1D-Spannungszustand ein Tensor 0.~Stufe und somit ein Skalar, der
Dieser Elastizitätstensor 4.~Stufe kann als Tensor 2.~Stufe, sprich als Matrix, dargestellt werden.
So wird die Spannungsgleichung stark vereinfacht, da nun eine Matrix auf einen Vektor operiert.
-Dieser Tensor muss für eine Spannung jeden Einfluss aus allen neun Dehnungen mit Konstanten erfassen.
-Dies bedeutet um eine von neun Spannungen berechnen zu können müssen alle neun Dehnung mit unterschiedlichen Faktoren summiert werden.
+Dieser Tensor muss für eine Spannung jeden Einfluss aus allen $9$ Dehnungen mit Konstanten erfassen.
+Dies bedeutet um eine von $9$ Spannungen berechnen zu können müssen alle $9$ Dehnung mit unterschiedlichen Faktoren summiert werden.
Es ergeben sich $9^2$ Einträge, welches mit den vier Indizes
\(
i, j, k, l\in\left\{1, 2, 3\right\}
@@ -354,14 +354,19 @@ beziehungsweise
\sigma_{12}
\end{pmatrix}
=
+%\left(
+%\begin{array}{ccc|ccc}
\begin{pmatrix}
C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\
C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\
C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\
+%\hline
C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2313} & C_{2312} \\
C_{1311} & C_{1322} & C_{1333} & C_{1323} & C_{1313} & C_{1312} \\
C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1213} & C_{1212}
\end{pmatrix}
+%\end{array}
+%\right)
\begin{pmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
@@ -417,14 +422,19 @@ Dies ergibt die Spannungsgleichung, welche weit möglichst vereinfacht ist:
\end{pmatrix}
=
\frac{E}{(1+\nu)(1-2\nu)}
-\begin{pmatrix}
+\left(
+\begin{array}{ccc|ccc}
+%\begin{pmatrix}
1- 2\nu & \nu & \nu & 0 & 0 & 0\\
\nu & 1- 2\nu & \nu & 0 & 0 & 0\\
\nu & \nu & 1- 2\nu & 0 & 0 & 0\\
+\hline
0 & 0 & 0 & \frac{1}{2} & 0 & 0\\
0 & 0 & 0 & 0 & \frac{1}{2} & 0\\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}
-\end{pmatrix}
+%\end{pmatrix}
+\end{array}
+\right)
\begin{pmatrix}
\varepsilon_{11}\\
\varepsilon_{22}\\
@@ -468,14 +478,19 @@ Durch einige Berechnungsschritte erhält man die Dehnungsgleichung:
\end{pmatrix}
=
\frac{1}{E}
-\begin{pmatrix}
+\left(
+\begin{array}{ccc|ccc}
+%\begin{pmatrix}
1 & -\nu & -\nu & 0 & 0 & 0 \\
-\nu & 1 & -\nu & 0 & 0 & 0 \\
-\nu & -\nu & 1 & 0 & 0 & 0 \\
+\hline
0 & 0 & 0 & 2+2\nu & 0 & 0 \\
0 & 0 & 0 & 0 & 2+2\nu & 0 \\
0 & 0 & 0 & 0 & 0 & 2+2\nu
-\end{pmatrix}
+%\end{pmatrix}
+\end{array}
+\right)
\begin{pmatrix}
\sigma_{11}\\
\sigma_{22}\\