aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/teil3.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-09-10 10:48:56 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-09-10 10:48:56 +0200
commitd98f38c1c5ef49bcdf1e4954b0d2f040d2a007c6 (patch)
treeb9f73743ba7611db4811d0d7e46f68d258524076 /buch/papers/spannung/teil3.tex
parentMerge pull request #100 from fabioviecelli/master (diff)
downloadSeminarMatrizen-d98f38c1c5ef49bcdf1e4954b0d2f040d2a007c6.tar.gz
SeminarMatrizen-d98f38c1c5ef49bcdf1e4954b0d2f040d2a007c6.zip
typos spannung
Diffstat (limited to '')
-rw-r--r--buch/papers/spannung/teil3.tex11
1 files changed, 6 insertions, 5 deletions
diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex
index c68c0d1..147fe01 100644
--- a/buch/papers/spannung/teil3.tex
+++ b/buch/papers/spannung/teil3.tex
@@ -13,7 +13,7 @@ Folglich gilt:
\]
Dadurch wird der Spannungszustand vereinfacht.
Diesen vereinfachten Spannungszustand kann man mit den zwei geotechnischen Invarianten abbilden.
-Die erste Invariante ist die volumetrische Spannung
+Die erste Invariante ist die volumetrische oder auch hydrostatische Spannung
\begin{equation}
p
=
@@ -76,8 +76,8 @@ Die Faktoren mit den Dehnungskomponenten können so als
\]
eingeführt werden, mit
\begin{align*}
- \varepsilon_{v} &= \text{Hydrostatische Dehnung [-]} \\
- \varepsilon_{s} &= \text{Deviatorische Dehnung [-].}
+ \varepsilon_{v} &= \text{hydrostatische Dehnung [-]} \\
+ \varepsilon_{s} &= \text{deviatorische Dehnung [-].}
\end{align*}
Die hydrostatische Dehnung $\varepsilon_{v}$ kann mit einer Kompression und
die deviatorische Dehnung $\varepsilon_{s}$ mit einer Verzerrung verglichen werden.
@@ -105,6 +105,7 @@ vereinfachen.
Diese Spannungsgleichung mit den zwei Einträgen ($p$ und $q$) ist gleichwertig
wie die ursprüngliche Spannungsgleichung mit den neun Einträgen
($\sigma_{11}$, $\sigma_{12}$, $\sigma_{13}$, $\sigma_{21}$, $\sigma_{22}$, $\sigma_{23}$, $\sigma_{31}$, $\sigma_{32}$, $\sigma_{33}$).
-Mit dieser Formel \eqref{spannung:Matrixschreibweise} lassen sich verschieden Ergebnisse von Versuchen analysieren und berechnen.
+Mit dieser Formel \eqref{spannung:Matrixschreibweise} lassen sich Ergebnisse von Versuchen analysieren und berechnen.
Ein solcher Versuch, der oft in der Geotechnik durchgeführt wird, ist der Oedometer-Versuch.
-Im nächsten Kapitel wird die Anwendung der Matrix an diesem Versuch beschrieben.
+In Abschnitt~\ref{spannung:section:Oedometrischer Elastizitätsmodul}
+wird die Anwendung der Matrix an diesem Versuch beschrieben.