diff options
author | fabioviecelli <80270098+fabioviecelli@users.noreply.github.com> | 2021-09-11 10:58:18 +0200 |
---|---|---|
committer | fabioviecelli <80270098+fabioviecelli@users.noreply.github.com> | 2021-09-11 10:58:18 +0200 |
commit | 161819cca8037d3d0cb364705aa8d1dc735c0209 (patch) | |
tree | 56fc080c3a9241705490408883bb6ea532439235 /buch/papers/uebersicht.tex | |
parent | Update Teil_Fabio.tex (diff) | |
parent | add combined images (diff) | |
download | SeminarMatrizen-161819cca8037d3d0cb364705aa8d1dc735c0209.tar.gz SeminarMatrizen-161819cca8037d3d0cb364705aa8d1dc735c0209.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r-- | buch/papers/uebersicht.tex | 16 |
1 files changed, 16 insertions, 0 deletions
diff --git a/buch/papers/uebersicht.tex b/buch/papers/uebersicht.tex index 64b8863..f095947 100644 --- a/buch/papers/uebersicht.tex +++ b/buch/papers/uebersicht.tex @@ -13,6 +13,8 @@ grundlegenden Modelle werden dabei verfeinert, verallgemeinert und auf vielfältige Weise angewandt. Den Anfang machen {\em Robine Luchsinger} und {\em Pascal Andreas Schmid}, +\index{Luchsinger, Robine}% +\index{Schmid, Pascal Andreas}% die zeigen, wie man basierend auf der Adjazenzmatrix Suchalgorithmen für Netzwerke aufbauen kann. Sie konzentrieren sich dabei auf Verkehrsnetze, die die zusätzliche @@ -23,6 +25,7 @@ Einfluss auf die Effizienz der Suchalgorithmen haben können. Die naive Umsetzung der Definition der Matrizenmultiplikation in ein Coputerprogramm ist nicht unbedingt die effizienteste. {\em Michael Schmid} stellt die Algorithmen von Strassen und +\index{Schmid, Michael}% Windograd vor, welche ermöglichen, die Laufzeitkomplexität von $O(n^3)$ auf $O(n^{2.8074})$ oder noch schneller zu verbessern. Allerdings nur unter gewissen Voraussetzungen, die im Paper @@ -31,6 +34,8 @@ ebenfalls diskutiert werden. Eine der schönsten Anwendungen der Gruppentheorie ist die Kristallographie. {\em Naoki Pross} und {\em Tim Tönz} zeigen, wie man mit ihrer +\index{Pross, Naoki}% +\index{Tönz, Tim}% Hilfe Kristalle klassifizieren kann, und sie illustrieren am Beispiel der Piezoelektrizität, dass man auch physikalische Eigenschaften daraus ableiten kann. @@ -42,6 +47,8 @@ und DVDs, begegnet er uns heute auch in den allgegenwärtigen QR-Codes. Ein ganzes Arsenal von algebraischen Methoden ist nötig, um seine Funktionsweise zu verstehen. {\em Joshua Bär} und {\em Michael Steiner} zeigen in vielen Einzelschritten, +\index{Bär, Joshua}% +\index{Steiner, Michael}% wie die man die einzelnen Ideen an vertrauteren Beispielen aus der elementaren Algebra und der Fourier-Theorie verstehen kann. Die Übertragung in einen Polynomring über einem endlichen Körper @@ -52,6 +59,7 @@ die diskrete Fourier-Transformation beide als Matrizen schreibt. Wer glaubt, mit linearen Abbildungen lassen sich nur gradlinige Objekte beschreiben, liegt völlig falsch. Die Arbeit von {\em Alain Keller} zeigt, dass die Iteration von +\index{Keller, Alain}% affinen Abbildungen hochkomplexe Fraktale hervorbringen kann. Solche iterierten Funktionsschemata erzeugen aber nicht nur schöne Bilder, man kann daraus auch eine Idee zur Kompression von @@ -64,6 +72,7 @@ brechen könnte. Das McEliece-Kryptosystem kombiniert verschiedene Arten von Matrizen mit zufälligem Rauschen und einem fehlerkorrigierenden Code. Wie {\em Reto Fritsche} erklärt, kommt dabei ein Verschlüsselungsverfahren +\index{Fritsche, Reto}% heraus, welches nach heutigem Wissensstand gegen Angriffe mit Quantencomputern resistent ist. @@ -75,6 +84,8 @@ In der Ebene kann man die komplexen Zahlen als Modell verwenden, wo Drehungen und Translationen durch einfache arithmetische Operationen mit Zahlen beschrieben werden können. {\em Marius Baumann} und {\em Thierry Schwaller} tauchen in die +\index{Baumann, Marius}% +\index{Schwaller, Thierry}% geometrische Algebra ein, welche diese Idee verallgemeinert. Sie illustrieren, wie sich mit geometrischer Algebra Bewegungen in $\mathbb{R}^n$ einfach beschreiben lassen. @@ -91,6 +102,8 @@ der von einem Gebäude im darunterliegenden Boden aufgebaut wird, im Detail verstehen und modellieren können sollte. Dazu muss man erst eine geeignete Darstellung finden. {\em Thomas Reichlin} und {\em Adrian Schuler} zeigen, wie man +\index{Reichlin, Thomas}% +\index{Schuler, Adrian}% dazu eigentlich über die Welt der Matrizen hinaus gehen muss und sich mit sogenannten Tensoren herumschlagen muss. Dank sinnvollen Annahmen über die reale Situation im Boden @@ -107,6 +120,8 @@ aufzeichen kann. Doch welcher Teil der aufgezeichneten Bewegung kommt vom Erdbeben und welcher Teil ist Eigenschwingung der Messmasse? Dieser Frage gehen {\em Fabio Viecelli} und {\em Lukas Zogg} nach. +\index{Viecelli, Fabio}% +\index{Zogg, Lukas}% Die Antwort gelingt mit einem Klassiker unter den Ingenieur-Methoden: dem Kalman-Filter. Die Autoren stellen die für den Filter nötigen Matrizen zusammen @@ -119,6 +134,7 @@ Doch wie findet man jetzt diejenige Zuteilung der Aufgaben zu den Anbietern, die die Gesamtkosten minimiert. Für dieses klassische Zuordnungsproblem ist die von {\em Marc Kühne} beschriebene ungarische Methode, +\index{Kühne, Marc}% auch als Munkres-Algorithmus bekannt, eine besonders effiziente Lösung. |