diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-07-27 15:50:16 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-07-27 15:50:16 +0200 |
commit | 57cfa7b28213caa6c13f6a364520c084e7281874 (patch) | |
tree | f43ad173dad38ce2c6b9dab977f8de988bbed89a /buch/papers/verkehr | |
parent | Merge pull request #49 from Kuehnee/master (diff) | |
parent | Anpassungen Abschnitt Ausblick (diff) | |
download | SeminarMatrizen-57cfa7b28213caa6c13f6a364520c084e7281874.tar.gz SeminarMatrizen-57cfa7b28213caa6c13f6a364520c084e7281874.zip |
Merge pull request #50 from paschost/patch-1
Patch 1
Diffstat (limited to '')
-rw-r--r-- | buch/papers/verkehr/main.tex | 3 | ||||
-rw-r--r-- | buch/papers/verkehr/section1.tex | 94 | ||||
-rw-r--r-- | buch/papers/verkehr/section2.tex | 22 | ||||
-rw-r--r-- | buch/papers/verkehr/section3.tex | 7 |
4 files changed, 49 insertions, 77 deletions
diff --git a/buch/papers/verkehr/main.tex b/buch/papers/verkehr/main.tex index 6348993..98d0581 100644 --- a/buch/papers/verkehr/main.tex +++ b/buch/papers/verkehr/main.tex @@ -3,8 +3,7 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:verkehr}} -\lhead{Verkehrsfluss und Verkehrsnetze} +\chapter{Verkehrsfluss und Verkehrsnetze\label{chapter:verkehr}} \begin{refsection} \chapterauthor{Pascal Andreas Schmid und Robine Luchsinger} diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex index d96d450..5abd107 100644 --- a/buch/papers/verkehr/section1.tex +++ b/buch/papers/verkehr/section1.tex @@ -1,95 +1,67 @@ -\section{Einführung} \label{section:verkehr/einfuehrung} -\subsection{Verkehrsnetze} Das Verkehrsnetz besteht aus allen Anlagen, auf oder unter der Erdoberfläche, auf denen eine räumliche Fortbewegung von Personen oder auch Gütern stattfindet. Verkehrsnetze sind ein Bestandteil der Verkehrsinfrastruktur, die auf topografischen Karten festgehalten werden. Sie umfassen den Schienenverkehr, alle Strassen und Wege, wie auch Flugplätze und alle dazugehörigen Bauwerke. Aus verkehrsgeografischer Sicht besteht das Verkehrsnetz aus Kanten, Knotenpunkten und dem Hinterland. Die Knotenpunkte werden auch hier durch die Kanten verbunden, die den Verkehrsstrom aufnehmen, wobei das Hinterland durch einzelne Knoten versorgt wird. Die Aufteilung in Kanten und Knotenpunkte ermöglicht eine Vereinfachung komplexer Verkehrsnetze, damit sie mittels der Graphentheorie untersucht werden können. Grundsätzlich können kurze Wege zwischen den Knotenpunkten das Ziel beim Aufbau eines Verkehrsnetzes sein. Es kann aber auch versucht werden, die Bau- und Unterhaltskosten des Verkehrsnetzes in einem gewissen Rahmen zu halten. Aus diesen Vorgaben ergibt sich dann, je nach dem was gewünscht wird, eine grob- oder feinmaschige Struktur des Netzes. Ziel ist aber ein möglichst wirtschaftliches und optimales Verkehrsnetz. -\subsection{Suchalgorithmen} +\section{Suchalgorithmen} +Inbesondere bei Graphen in Form von Verkehrsnetzen ist das Finden eines kürzesten Weges von Interesse. Mathematisch betrachtet handelt es sich hierbei um ein Optimierungsproblem, bei dem die Summe der Kantengewichte zwischen zwei Knoten minimiert werden soll. Zu diesem Zweck existieren verschiedene Suchalgorithmen. In den folgenden Abschnitten wird auf eines Auswahl davon eingegangen. Zuvor ist es jedoch notwendig, einige Begriffe und Eigenschaften von Suchalgorithmen zu definieren. -\subsubsection{Dijkstra-Algorithmus} -Der Algorithmus von Dijkstra ist benannt nach seinem Erfinder dem Mathematik- und Infomratikprofessor Edsger Dijkstra. Den Algorithmus hat er im Jahr 1959 erfunden. -Der Algorithmus von Dijkstra ist ein Greedy-Algorithmus (gieriger Algorithmus), der schrittweise einen Folgezustand auswählt, damit beim Zeitpunkt der Wahl der grösste Gewinn bzw. das beste Ergebnis erzielt werden kann. -Trotz der Schnelligkeit der Greedy-Algorithmen, können viele Probleme nicht optimal gelöst werden. -Vereinfacht wird beim Dijkstra-Algorithmus, ausgehend von einem Startknoten so lange dem kürzesten Pfad gefolgt, bis der Zielknoten erreicht wird. Dabei muss für jeden besuchten Knoten die Kostenfunktion als auch der Pfad dahin (vorheriger Knoten) gespeichert werden. -Dadurch wird hingegen garantiert, dass, wenn der Zielknoten erreicht wird, auch der kürzeste Pfad gefunden wurde. -Grundlegende Voraussetzung für den Dijkstra-Algorithmus ist die strikte Positivität der Kantengewichte. Andernfalls würde ein wiederholtes Ablaufen einer Kante mit negativem Gewicht zu einer stetigen Reduktion der Kostenfunktion führen, was zu einer unendlichen Schlaufe führen würde. +Einerseits wird zwischen optimalen und nicht-optimalen Algorithmen unterschieden. Ein Suchalgorithmus gilt als optimal, falls er einen günstigsten Pfad zwischen zwei Knoten findet. Es gilt zu beachten, dass im Falle des Vorhandenseins von mehrerern Pfaden mit identischer, minimaler Summe der Kantengewichte zwischen zwei Knoten, mindestens einer dieser Pfade gefunden wird. -Gegeben sei ein Netzwerk mit $n$ Knoten und dem Startknoten $a$. -Alle Kanten sind mit $k(i, j)$ bewertet. -Gesucht wird der kürzeste Pfad zwischen dem Startknoten und allen übrigen Knoten im Netz. -$D(i)$ ist die kürzeste Distanz vom Startknoten $a$ zum Knoten $i, V(i)$ ist der unmittelbare Vorgängerknoten vom Knoten $i$ auf dem kürzesten Weg vom Startknoten $a$ zum Konten $i$ und die Menge $M$ ist die Menge einer bestimmten Auswahl an Knoten. +Weiter wird zwischen informierten und uninformierten Algorithmen differenziert. Während uninformierte Suchalgorithmen den Suchraum schematisch auf Basis der Eigenschaften des Graphen absuchen, bis eine günstigste Lösung gefunden wurde, verwenden informierte Suchalgorithmen eine Heuristik zur Abschätzung der Suchrichtung. Oftmals wird bei informierten Algorithmen ein Verlust der Optimalität zugunsten einer verbesserten Rechenzeit in Kauf genommen. Es exisitieren jedoch auch Heurstiken, die eine optimale Lösung gewährleisten. -Dabei gilt -\begin{equation}M={a}\end{equation} -\begin{equation}D(a)=0\end{equation} wobei -\begin{equation}D(i)=\infty\end{equation} und -\begin{equation}i \neq a \end{equation} -Ausserdem gilt \begin{equation}V(i)=(-) \text{für alle Knoten $i$}\end{equation}\\ +Eine besondere Art von Suchalgorithmen stellen die sogenannten Greedy-Algorithmen, zu deutsch gierige Algorithmen, dar. Sie zeichnen sich dadurch aus, dass stets der günstigste Weg verfolgt wird und davon ausgehend der darauffolgende, günstigste Folgezustand ausgewählt wird. Am Beispiel eines Verkehrsnetzes ist somit gewährleistet, dass beim Antreffen des Zielknotens auch der günstigste Pfad gefunden wurde. -%THEORIE... -Iteration +\subsection{Dijkstra-Algorithmus} +Der Algorithmus von Dijkstra ist benannt nach seinem Erfinder dem Mathematik- und Informatikprofessor Edsger Dijkstra. Er gehört zur Klasse der uninformierten Greedy-Algorithmen. Zudem ist die Optimalität bei strikter Positivität des Graphen gewährleistet. +Vorteilhaft ist die einfache Implementierung. Abhängig von der Programmiersprache sind zwischen 30 und 40 Zeilen an Code ausreichend, damit er den kürzesten Pfad zwischen einem Startknoten $a$ und Zielknoten $b$ finden kann. Die für dieses Paper verwendete Funktion verwendet eine abgewandelte Form der gewichteten Adjazenz-Matrix $A$, für welche gilt: +Der Matrix-Eintrag $A_{i,j}$ weist das Kantengewicht der Kante von Knoten $j$ nach $i$ auf. Falls keine Kante zwischen $j$ und $i$ vorhanden ist, beträgt der Eintrag $\infty$. Dies vereinfacht die Implementierung zur Bestimmung des nächst-günstigsten Pfades. +Zudem werden zwei Hilfs-Vektoren $\vec{d}$ und $\vec{b}$ der Länge $n$ eingeführt, wobei $n$ die Anzahl Knoten des Graphen ist. Im Vektoreintrag $\vec{d}(i)$ wird das kummulierte Kantengewicht zur Erreichung von Knoten $i$ vom Startknoten $a$ gespeichert. Der Eintrag $\vec{d}(a)$ beträgt somit $0$. Im Vektor $\vec{b}$ wird zudem vermerkt, falls ein Knoten bereits als Ziel eines kürzesten Pfads gefunden wurde und somit für die weitere Suche nicht mehr berücksichtigt werden muss ($\vec{b}(i)=1$, sonst $\vec{b}(i)=0$). -1. Auswahl eines Knotens \begin{equation} K\in M \text{mit} D(K)=D(i);i\in M\end{equation} +Ausgehend vom Startknoten $a$ wird nun anhand der Matrix $A$ in der Spalte $a$ nach dem kleinsten Eintrag gesucht. Somit wird der Folgeknoten $c$ gefunden. Dieser Vorgang wird nun wiederholt, wobei jedoch sämtliche von Knoten $a$ und $c$ erreichbaren Knoten berücksichtigt werden, die noch nicht besucht wurden. In anderen Worten alle nicht verschwindenden Einträge $i$ der Spalten $a$ und $c$ der Matrix $A$, für welche gilt $\vec{b}(i)=0$. Ausschlaggebend für die folgende Auswahl ist die Summe der kummulierten Kantengewichte und des Kantengewichts des nächsten Knotens. Als Beispiel zur Erreichung von Knoten $k$ über Knoten $j$: +\begin{equation} +\vec{d}(k)=\vec{d}(j)+A(k,j) +\end{equation} +Diese Iteration wird solang durchgeführt, bis der Folgeknoten dem Zielknoten entspricht. -2. Für alle Nachfolger $N(j)$ vom Knoten $K$ gilt: -\begin{equation}D(K) + k_Kj < D(j)\end{equation} dann wird \begin{equation}D(j) = D(K) + k_Kj, V(j) = K\end{equation} gesetzt und somit wird der Knoten $j$ in die Menge $M$ aufgenommen. +\subsection{A*-Algorithmus} +Der A*-Algorithmus basiert auf dem Dijkstra-Algorithmus, verwendet jedoch eine Heuristik zur Abschätzung der günstigsten Suchrichtung. Somit handelt es sich um einen informierten Greedy-Algorithmus, der abhängig von der verwendeten Heuristik auch optimal sein kann. Er wurde von Peter Hart, Nils Nilsson und Bertram Raphael entwickelt. -3. Der ausgewählte Knoten \begin{equation}K\in M\text{wird aus der Menge herausgelöscht}\end{equation}\\ -Diese drei Schritte werden so lange wiederholt bis gilt -\begin{equation}M=\{\}\end{equation} +\subsection{Anwendung A*-Algorithmus} +Wie oben erwähnt basiert der A*-Algorithmus auf dem Shortest-Path-Algorithmus von Dijkstra. Gemäss dem Algorihtmus von Dijkstra werden von einem Startknoten aus die jeweiligen Nachbarknoten, die Nachbarknoten der Nachbarknoten usw. verarbeitet. Die Kantengewichte werden dabei aufsummiert und die Priorität wird auf die Kante gelegt, die das geringste Gewicht aufweist. Mit diesem Verfahren wird sichergestellt, dass die erste gefundene Lösung auch eine optimale Lösung darstellt.\\ -\subsubsection{A*-Algorithmus} -Suchalgorithmen werden nach einfachen (uninformierte) und heuristischen (informierten) Algorithmen unterschieden. Während einfache Algorithmen den Suchraum intuitiv durchsuchen, beziehen heuristische Algorithmen Wissen über den Suchraum mit ein. -Der A*-Algorithmus geht auf seine Erfinder Peter Hart, Nils Nilsson und Bertram Raphael zurück, die den Algorithmus erstmals im Jahr 1968 beschrieben. -Der A*-Algorithmus ist ein heuristischer Suchalgorithmus, der den kürzesten Pfad zwischen zwei Knoten in einem Graphen mit positiven Kantengewichten berechnet. -Im Gegensatz zu einfachen Suchalgorithmen, wird beim A*-Algorithmus eine Schätzfunktion, die sogenannte Heuristik, verwendet. Dies ermöglicht ein zielgerichtetes Suchen und gleichzeitig wird die Laufzeit verringert. -Ausserdem findet der A*-Algorithmus immer eine optimale Lösung, sofern eine vorhanden ist. -Der A*-Algorithmus wird als Verallgemeinerung gehandhabt und gilt als Erweiterung des Dijkstra-Algorithmus. +Der A*-Algorithmus unterscheidet sich vom Dijkstra-Algorithmus dahingehend, dass bei der Auswahl des Folgeknotens, nicht nur die Summe der Kantengewichte $\vec{d}(j)+A(k,j)$, sondern zusätzlich die für jeden Knoten definierte Abschätzfunktion $f(k)$ hinzuaddiert wird. Dies passiert jedoch nur bei der \emph{Auswahl} des Folgeknotens. Der Wert von $f(k)$ wird nicht im Eintrag $\vec{d}(k)$ gespeichert. Somit wird gewährleistet, dass der gefundene Pfad, der Summe der Kantengewichte entspricht. -\subsubsection{Anwendung A*-Algorithmus} -Wie oben erwähnt basiert der A*-Algorithmus auf dem Shortest-Path-Algorithmus von Dijkstra. Gemäss dem Algorihtmus von Dijkstra werden von einem Startknoten aus die jeweiligen Nachbarknoten, die Nachbarknoten der Nachbarknoten usw. verarbeitet. Die Kantengewichte werden dabei aufsummiert und die Priorität wird auf die Kante gelegt, die das geringste Gewicht aufweist. Mit diesem Verfahren wird sichergestellt, dass die erste gefundene Lösung auch die optimalste Lösung darstellt.\\ +\subsection{Euklidische Heuristik} +Bei Verkehrsnetzen ist die euklidische Distanz eine gängige und zuverlässige Heurstik. Dabei wird zu den effektiven Reisekosten zum aktuellen Knoten die euklidische Distanz bis zum Zielknoten hinzuaddiert. Dadurch wird die Kostenfunktion konsequent nie überschätzt. Dies stellt eine Voraussetzung an eine zulässige Heuristik dar. Unter Verwendung dieser Heuristik gilt der A*-Algorithmus als optimal. -Die Kantengewichte werden für jeden Knoten in Form einer Funktion dargestellt -\begin{equation}f(n)=g(n)\end{equation} mit -\begin{equation}g(n)=\text{Summe aller Kantengewichte vom Startknoten bis n}\end{equation}\\ -Der A*-Algorithmus erweitert die Vorgehensweise des Algorithmus von Dijkstra um die Heuristik $h(n)$, die für jeden Knoten $n$ die geschätzte Entfernung zum Zielknoten beschreibt. -Somit gilt: -\begin{equation}f(n)=g(n)+h(n)\end{equation}\\ -Wie auch der Algorithmus von Dijkstra findet der A*-Algorithmus die optimalste Lösung. +Was bei einem physischen Verkehrsnetz einfach zu bewältigen ist, da Koordinaten von Verkehrsnetzen zur Berechnung der Distanz verwendet werden können, ist bei virtuellen Netzwerken (z.B. Servernetzen) entweder nicht möglich, oder nicht relevant. Hier können hingegen andere Eigenschaften des Netzwerks verwendet werden, auf welche in diesem Paper nicht weiter eingegangen wird. -\subsubsection{Floyd-Warshall-Algorithmus} +\subsection{Floyd-Warshall-Algorithmus} Der Floyd-Warshall-Algorithmus, auch Tripel-Algorithmus genannt, wurde erstmals im Jahr 1962 von seinen Namensgebern Robert Floyd und Stephen Warshall vorgestellt. -Der Floyd-Warshall-Algorithmus sucht kürzeste Wege innerhalb eines Graphen. Er ermittelt aber nicht nur die Distanz zwischen zwei Knoten, sondern berechnet die kürzesten Wege zwischen allen Knotenpaaren eines gewichteten Graphen. Somit werden die kürzesten , beziehungsweise die optimalsten Wege zwischen allen Paaren von Knoten berechnet. Der Floyd-Warhshall-Algrithmus kann ausserdem mit negativen Kantengewichten umgehen, sofern der Graph aber keinen negativen Kreis (Zyklus) aufweist. Ist dies der Fall, führt der Algorithmus zu einem falschen Ergebnis. +Der Floyd-Warshall-Algorithmus sucht kürzeste Wege innerhalb eines Graphen. Er ermittelt aber nicht nur die Distanz zwischen zwei Knoten, sondern berechnet die kürzesten Wege zwischen allen Knotenpaaren eines gewichteten Graphen. Somit werden die günstigsten Wege zwischen allen Paaren von Knoten berechnet. Der Floyd-Warhshall-Algrithmus kann ausserdem mit negativen Kantengewichten umgehen, sofern der Graph aber keinen negativen Kreis (Zyklus) aufweist. Ist dies der Fall, führt der Algorithmus zu einem falschen Ergebnis. Ein Kreis (Zyklus) in einem Graphen ist ein Weg, bei dem Start- und Endpunkt den gleichen Knoten aufweisen. Dieser wird negativ, wenn die Summe der gewichteten Kanten kleiner als Null wird.\\ -Der Floyd-Warshall-Algorithmus besteht grundsätzlich aus Floyd's Berechnung der kürzesten Distanzen zwischen zwei Knoten und Warshall's Konstruktion der kürzesten Wege. Werden diese beiden Teilgebiete zusammengefügt, ergibt sich der Floyd-Warshall-Algorithmus. -\subsubsection{Anwendung Floyd-Warshall-Algorithmus} - -Wie oben erwähnt, besteht der Floyd-Warshall-Algorithmus aus dem Teil von Floyd zur Berechnung der kürzesten Pfade und dem Teil von Warshall zur Konstruktion der kürzesten Pfade. +\subsection{Anwendung Floyd-Warshall-Algorithmus} %THEORIE... -Als erstes wird eine Gewichtsmatrix $W$ mit den Matrixeinträgen $W[i, j]$ erstellt. +In einem ersten Schritt wird eine Gewichtsmatrix $W$ mit den Matrixeinträgen $W[i, j]$ erstellt. Der Algorithmus berechnet danach in einer Hauptschleife alle Knoten $k$ von 1 bis $n$. Dabei versucht er in jeder Iteration alle Wege von $i$ nach $j$ durch die Wege $(i, k)$ und $(k, j)$ zu verbessern. -Falls dieser mögliche Umweg zu einer Verbesserung führt, wird der Algorithmus aktualisiert. +Falls dieser mögliche Umweg zu einer Verbesserung führt, wird der entsprechende Eintrag aktualisiert. Die aktuelle Gewichtung der Pfade wird mit \begin{equation}d[i, j]=min[d[i,j], d[i,k] + d[k,i]]\end{equation} ermittelt. -\subsubsection{Euklidische Heuristik} -Bei Verkehrsnetzen ist die euklidische Distanz eine gängige und zuverlässige Heurstik. Dabei wird zu den effektiven Reisekosten zum aktuellen Knoten die euklidische Distanz bis zum Zielknoten hinzuaddiert. Dadurch wird die Kostenfunktion konsequent nie überschätzt. Dies stellt eine Voraussetzung an eine zulässige Heuristik dar. -Was bei einem physischen Verkehrsnetz einfach zu bewältigen ist, da Koordinaten von Verkehrsnetzen zur Berechnung der Distanz verwendet werden können, ist bei virtuellen Netzwerken (z.B. Servernetzen) entweder nicht möglich, oder nicht relevant. -\subsection{PageRank-Algorithmus} -Der PageRank-Algorithmus wurde von den Gründern von Google, Larry Page und Sergey Brin im Jahr 1996 entwickelt und zum Patent angemeldet. Zwei Jahre später gründeten sie ihr Unternehmen Google Inc.. -Beim PageRank-Algorithmus handelt es sich um den Algorithmus von Google, aus dem die Google-Matrix abgeleitet wird. -Die Google-Matrix ist eine immens grosse Matrix mit Millionen Zeilen und Spalten, die für die schnelle und vor allem exakte Bestimmung der PageRanks (Gewichtung) eine grosse Bedeutung hat. -Der PageRank-Algorithmus analysiert und gewichtet beispielsweise die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur. -Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt.\\ + +\section{PageRank-Algorithmus} +Der PageRank-Algorithmus wurde von den Gründern von Google, Larry Page und Sergey Brin im Jahr 1996 entwickelt und zum Patent angemeldet. Zwei Jahre später gründeten sie ihr Unternehmen Google Inc. +Beim PageRank-Algorithmus handelt es sich nicht um einen Suchalgorithmus, stattdessen werden Knoten aufgrund der Vernetzung des vorliegenden Graphen bewertet. +Verwendet wird er beispielsweise um die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur zu bewerten und relevante Suchergebnisse zu ermittteln. Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt.\\ Dabei handelt es sich um einen iterativen Prozess. Ausgegangen wird von der Adjazenz-Matrix $A$, für welche gilt. %THEORIE... diff --git a/buch/papers/verkehr/section2.tex b/buch/papers/verkehr/section2.tex index 638d9dd..4de0b24 100644 --- a/buch/papers/verkehr/section2.tex +++ b/buch/papers/verkehr/section2.tex @@ -1,12 +1,12 @@ \section{Versuchsreihe} \label{section:verkehr/versuchsreihe} -Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. -Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. -Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. -Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. +Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der Dijkstra- und der A*-Algorithmus auf das Netzwerk angewandt. +Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal wiederholt. +Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Menge der Kanten (engl. \emph{edges}) und $V$ die Menge der Knoten (engl. \emph{vertices}) des Graphen $G$ darstellt. +Für den A*-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zur Zeitkomplexität machen. -Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. +Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. \subsection{Einfluss der Knotenzahl auf die Rechenzeit} \label{verkehr:Knotenzahl} @@ -19,9 +19,9 @@ Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- \label{verkehr:Vr1} \end{figure} -In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. +In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen Dijkstra und A* erst ab einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. -Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. +Abbildung \ref{verkehr:pathDifference} illustriert dies, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. \begin{figure} \centering @@ -36,13 +36,13 @@ Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei di \begin{figure} \centering -\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png}\\ +\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png} \caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} \label{verkehr:Vr2} \end{figure} -Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ -Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. +Zum Vergleich der Resultate in Abschnitt \ref{verkehr:Knotenzahl} zeigt Abbildung \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen. +Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen Dijkstra und A* deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des A*-Algorithmus erklären. \begin{figure} \centering @@ -52,4 +52,4 @@ Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwis \label{verkehr:Comparison} \end{figure} -In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. +In Abbildung \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. diff --git a/buch/papers/verkehr/section3.tex b/buch/papers/verkehr/section3.tex index 99a0d92..9aa8ae4 100644 --- a/buch/papers/verkehr/section3.tex +++ b/buch/papers/verkehr/section3.tex @@ -1,8 +1,9 @@ \section{Ausblick} \subsection{Optimierungsprobleme bei Graphen} -Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Grafen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.\\ -Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem \emph{Dijkstra}, oder dem \emph{A*}-Algorithmus anstelle der Graph-Matrix (mit Kantengewichten als Einträgen) die Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten. +Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Graphen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen. + +Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem Dijkstra- oder dem A*-Algorithmus anstelle der gewichteten Adjazenz-Matrix (mit Kantengewichten als Einträgen) die ungewichtet Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten. \subsection{Wahl der Heuristik} -Ein grundlegendes Problem bei der Anwendung des \emph{A*} oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.\\ +Ein grundlegendes Problem bei der Anwendung des A* oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch. In nicht-physischen Netzwerken stellt sich jedoch eine zweite Problematik. Da eine physische Distanz entweder nicht ermittelt werden kann, oder aber nicht ausschlaggebend ist, sind andere Netzwerk-Eigenschaften zur Beurteilung beizuziehen. Die Zuverlässigkeit ist dabei aber in den meisten Fällen nicht vergleichbar hoch, wie bei der euklidischen Heuristik. Oftmals werden deshalb bei derartigen Problem auch Algorithmen angewendet, die eine deutlich optimierte Zeitkomplexität aufweisen, dafür aber nicht mit Sicherheit den effizienstesten Pfad finden. |