diff options
author | Nao Pross <np@0hm.ch> | 2021-05-23 16:24:34 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-05-23 16:24:34 +0200 |
commit | b4093cfc873e052d31f644019f0b1134f1db7fbc (patch) | |
tree | 6479c51bd2de23689d3f01ff94d54f81843ed053 /buch/papers | |
parent | Create file for piezo, update bibliography (diff) | |
download | SeminarMatrizen-b4093cfc873e052d31f644019f0b1134f1db7fbc.tar.gz SeminarMatrizen-b4093cfc873e052d31f644019f0b1134f1db7fbc.zip |
On point groups and translational symmetry
Diffstat (limited to '')
-rw-r--r-- | buch/papers/punktgruppen/symmetry.tex | 30 |
1 files changed, 29 insertions, 1 deletions
diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index c0418aa..d3ccb4e 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -85,7 +85,7 @@ nun eingeführt wird. \begin{definition}[Symmetriegruppe] Sei \(g\) eine Operation, die ein mathematisches Objekt unverändert lässt. - Bei einer anderen Operation \(r\) definieren wir die Komposition \(r\circ g\) + Bei einer anderen Operation \(h\) definieren wir die Komposition \(h\circ g\) als die Anwendung der Operationen nacheinander. Alle Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} @@ -147,4 +147,32 @@ Natürlich, ja. Dafür führen wir den Begriff der Darstellung ein. ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. \end{beispiel} +Die Symmetrien, die wir bis jetzt besprochen haben, haben immer mindestens +einen Punkt unbesetzt gelassen. Im Fall der Rotation war es der Drehpunkt, bei +der Spiegelung die Achse. Dies ist jedoch keine Voraussetzung für eine +Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt +verschieben können. Ein aufmerksamer Leser wird bemerken, dass die +unveränderten Punkte zum Eigenraum\footnote{Zur Erinnerung \(E_\lambda = +\mathrm{null}(\Phi - \lambda I)\)} der Matrixdarstellung der Symmetrieoperation +gehören. Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, +nennt man Punktsymmetrie. +\begin{definition}[Punktgruppe] + Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens + einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine + Punktgruppe ist. +\end{definition} +Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren: +eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr +nützlich ist, nämlich die Translationssymmetrie. Von einem mathematischen +Objekt \(x\) wird gesagt, dass es eine Translationssymmetrie \(Q\) hat, wenn es +die Gleichung +\[ + Q(x) = Q(x + a), +\] +für ein gewisses \(a\), erfüllt. Zum Beispiel besagt das erste Newtonsche +Gesetz, dass ein Objekt, auf das keine Kraft einwirkt, eine +zeitranslationsinvariante Geschwindigkeit hat, d.h. wenn \(\vec{F} = \vec{0}\) +dann \(\vec{v}(t) = \vec{v}(t + \tau)\). + + % vim:ts=2 sw=2 spell spelllang=de: |