diff options
author | LordMcFungus <mceagle117@gmail.com> | 2021-03-22 18:05:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-22 18:05:11 +0100 |
commit | 76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch) | |
tree | 11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /vorlesungen/slides/3/division2.tex | |
parent | more chapter structure (diff) | |
parent | add title image (diff) | |
download | SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip |
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/3/division2.tex | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/vorlesungen/slides/3/division2.tex b/vorlesungen/slides/3/division2.tex new file mode 100644 index 0000000..0602598 --- /dev/null +++ b/vorlesungen/slides/3/division2.tex @@ -0,0 +1,34 @@ +% +% division2.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Division in $\Bbbk[X]$} +\vspace{-5pt} +\begin{block}{Aufgabe} +Finde Quotienten und Rest der Polynome +$a(X) = X^4-X^3-7X^2+X+6$ +und +$b(X) = 2X^2+X+1$ +\end{block} +\uncover<2->{% +\begin{block}{Lösung} +\vspace{-15pt} +\[ +\arraycolsep=1.4pt +\renewcommand{\arraystretch}{1.2} +\begin{array}{rcrcrcrcrcrcrcrcrcrcr} +\llap{$($}X^4&-& X^3&-& 7X^2&+& X&+& 6\rlap{$)$}&\mathstrut\;:\mathstrut&(2X^2&+&X&+&1)&=&\uncover<3->{\frac12X^2}&\uncover<7->{-&\frac34X}&\uncover<11->{-\frac{27}{8}} = q\\ +\uncover<4->{\llap{$-($}X^4&+&\frac12X^3&+& \frac12X^2\rlap{$)$}}& & & & & & & & & & & & & & & \\ + &\uncover<5->{-&\frac32X^3&-&\frac{15}2X^2}&\uncover<6->{+& X}& & & & & & & & & & & & & \\ + &\uncover<8->{\llap{$-($}-&\frac32X^3&-&\frac{ 3}4X^2&-&\frac{ 3}4X\rlap{$)$}}& & & & & & & & & & & & & \\ + & & &\uncover<9->{-&\frac{27}4X^2&+&\frac{ 7}4X}&\uncover<10->{+& 6}& & & & & & & & & & & \\ + & & &\uncover<12->{\llap{$-($}-&\frac{27}4X^2&-&\frac{27}8X&-&\frac{27}{8}\rlap{$)$}}& & & & & & & & & & & \\ + & & & & & &\uncover<13->{\frac{41}8X&+&\frac{75}{8}\rlap{$\mathstrut=r$}}& & & & & & & & & & & \\ +\end{array} +\] +Funktioniert, weil man in $\Bbbk[X]$ immer normieren kann +\end{block}} + +\end{frame} |