diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-01 09:12:46 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-01 09:12:46 +0100 |
commit | 20d5294ab3401613076723ccb942dfbc484b74b9 (patch) | |
tree | 82f65ec32c06e6fa21ce8a0a60eaf12f3e271637 /vorlesungen/slides/3/teilbarkeit.tex | |
parent | add new slides (diff) | |
download | SeminarMatrizen-20d5294ab3401613076723ccb942dfbc484b74b9.tar.gz SeminarMatrizen-20d5294ab3401613076723ccb942dfbc484b74b9.zip |
phases, new slides
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/3/teilbarkeit.tex | 21 |
1 files changed, 12 insertions, 9 deletions
diff --git a/vorlesungen/slides/3/teilbarkeit.tex b/vorlesungen/slides/3/teilbarkeit.tex index 25e4fa6..a5ea9b9 100644 --- a/vorlesungen/slides/3/teilbarkeit.tex +++ b/vorlesungen/slides/3/teilbarkeit.tex @@ -9,29 +9,32 @@ \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Teilen in $\mathbb{Z}$} -Zu zwei Zahlen $a,b\in \mathbb{Z}$, $a>b$ gibt es -immer genau ein Paar $q,r\in\mathbb{Z}$ derart, dass +Zu zwei Zahlen $a,b\in \mathbb{Z}$, \only<3->{{\color<3-4>{red}$a>b$}, }gibt es +immer \only<3->{{\color<3-4>{red}genau}} ein Paar $q,r\in\mathbb{Z}$ derart, dass \begin{align*} a&=bq+r \\ -r&< b +\uncover<3->{{\color<3-4>{red}r}&{\color<3-4>{red}< b}} \end{align*} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<2->{% \begin{block}{Teilen in $\mathbb{Q}[X]$} -Zu zwei Polynomen $a,b\in\mathbb{Q}[X]$, $\deg a > \deg b$ +Zu zwei Polynomen $a,b\in\mathbb{Q}[X]$, \only<4->{{\color<4>{red}$\deg a > \deg b$},} gibt es -immer genau ein Paar $q,r\in\mathbb{Q}[X]$ derart, dass +immer \only<4->{{\color<4>{red}bis auf eine Einheit genau }}% +ein Paar $q,r\in\mathbb{Q}[X]$ derart, dass \begin{align*} a&=bq+r \\ -\deg r&< \deg b +\uncover<4->{{\color<4>{red}\deg r}&{\color<4>{red}< \deg b}} \end{align*} -\end{block} +\end{block}} \end{column} \end{columns} -\begin{block}{Allgmein: euklidischer Ring} +\uncover<5->{% +\begin{block}{Allgemein: euklidischer Ring} Nullteilerfreier Ring $R$ mit einer Funktion $d\colon R\setminus{0}\to\mathbb{N}$ mit \begin{itemize} @@ -40,5 +43,5 @@ $d\colon R\setminus{0}\to\mathbb{N}$ mit $x=qy +r$ mit $d(y)>d(r)$ \end{itemize} Euklidische Ringe haben ähnliche Eigenschaften wie Polynomringe -\end{block} +\end{block}} \end{frame} |