aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/4
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-06-14 07:26:10 +0200
committerGitHub <noreply@github.com>2021-06-14 07:26:10 +0200
commit114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch)
tree18e61c7d69883a1c9b69098b7d36856abaed5c1e /vorlesungen/slides/4
parentDelete buch.pdf (diff)
parentFix references.bib (diff)
downloadSeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz
SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip
Merge branch 'master' into master
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/4/Makefile.inc14
-rw-r--r--vorlesungen/slides/4/chapter.tex13
-rw-r--r--vorlesungen/slides/4/char2.tex48
-rw-r--r--vorlesungen/slides/4/charakteristik.tex71
-rw-r--r--vorlesungen/slides/4/euklidmatrix.tex2
-rw-r--r--vorlesungen/slides/4/frobenius.tex54
-rw-r--r--vorlesungen/slides/4/galois/aufloesbarkeit.tex120
-rw-r--r--vorlesungen/slides/4/galois/automorphismus.tex118
-rw-r--r--vorlesungen/slides/4/galois/erweiterung.tex65
-rw-r--r--vorlesungen/slides/4/galois/images/Makefile12
-rw-r--r--vorlesungen/slides/4/galois/images/common.inc89
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel.pngbin0 -> 259243 bytes
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel.pov9
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel2.pngbin0 -> 366915 bytes
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel2.pov9
-rw-r--r--vorlesungen/slides/4/galois/konstruktion.tex147
-rw-r--r--vorlesungen/slides/4/galois/quadratur.tex66
-rw-r--r--vorlesungen/slides/4/galois/radikale.tex69
-rw-r--r--vorlesungen/slides/4/galois/sn.tex87
-rw-r--r--vorlesungen/slides/4/galois/winkeldreiteilung.tex94
-rw-r--r--vorlesungen/slides/4/galois/wuerfel.tex64
-rw-r--r--vorlesungen/slides/4/qundr.tex138
22 files changed, 1288 insertions, 1 deletions
diff --git a/vorlesungen/slides/4/Makefile.inc b/vorlesungen/slides/4/Makefile.inc
index ad1081e..5aac429 100644
--- a/vorlesungen/slides/4/Makefile.inc
+++ b/vorlesungen/slides/4/Makefile.inc
@@ -17,6 +17,20 @@ chapter4 = \
../slides/4/euklidpoly.tex \
../slides/4/polynomefp.tex \
../slides/4/schieberegister.tex \
+ ../slides/4/charakteristik.tex \
+ ../slides/4/char2.tex \
+ ../slides/4/frobenius.tex \
+ ../slides/4/qundr.tex \
../slides/4/alpha.tex \
+ ../slides/4/galois/erweiterung.tex \
+ ../slides/4/galois/automorphismus.tex \
+ ../slides/4/galois/konstruktion.tex \
+ ../slides/4/galois/wuerfel.tex \
+ ../slides/4/galois/winkeldreiteilung.tex \
+ ../slides/4/galois/quadratur.tex \
+ ../slides/4/galois/radikale.tex \
+ ../slides/4/galois/aufloesbarkeit.tex \
+ ../slides/4/galois/sn.tex \
../slides/4/chapter.tex
+
diff --git a/vorlesungen/slides/4/chapter.tex b/vorlesungen/slides/4/chapter.tex
index a10712a..0691e39 100644
--- a/vorlesungen/slides/4/chapter.tex
+++ b/vorlesungen/slides/4/chapter.tex
@@ -16,3 +16,16 @@
\folie{4/polynomefp.tex}
\folie{4/alpha.tex}
\folie{4/schieberegister.tex}
+\folie{4/charakteristik.tex}
+\folie{4/char2.tex}
+\folie{4/frobenius.tex}
+\folie{4/qundr.tex}
+\folie{4/galois/erweiterung.tex}
+\folie{4/galois/automorphismus.tex}
+\folie{4/galois/konstruktion.tex}
+\folie{4/galois/wuerfel.tex}
+\folie{4/galois/winkeldreiteilung.tex}
+\folie{4/galois/quadratur.tex}
+\folie{4/galois/radikale.tex}
+\folie{4/galois/aufloesbarkeit.tex}
+\folie{4/galois/sn.tex}
diff --git a/vorlesungen/slides/4/char2.tex b/vorlesungen/slides/4/char2.tex
new file mode 100644
index 0000000..2b5709a
--- /dev/null
+++ b/vorlesungen/slides/4/char2.tex
@@ -0,0 +1,48 @@
+%
+% char2.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Charakteristik 2}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Plus und Minus}
+\[
+x+x = 2x = 0
+\uncover<2->{\Rightarrow
+-x=x}
+\]
+\end{block}
+\uncover<3->{%
+\begin{block}{Quadrieren}
+In $\mathbb{F}_2$ ist $2=0$, d.h
+\[
+(x+y)^2
+=
+x^2 + 2xy + y^2
+\uncover<4->{=
+x^2 + y^2}
+\]
+für alle $x,y\in\Bbbk$
+\end{block}}
+\uncover<6->{%
+\begin{block}{Frobenius-Automorphismus}
+\[
+(x+y)^{2^n} = x^{2^n}+y^{2^n}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Pascal-Dreieck}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/30-endlichekoerper/images/binomial2.pdf}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/charakteristik.tex b/vorlesungen/slides/4/charakteristik.tex
new file mode 100644
index 0000000..a0d6d3e
--- /dev/null
+++ b/vorlesungen/slides/4/charakteristik.tex
@@ -0,0 +1,71 @@
+%
+% charakteristisk.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Primkörper und Charakteristik}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Primkörper}
+$1\in\Bbbk$
+\begin{enumerate}
+\item<2->
+$n\cdot 1\ne 0\;\forall n\in\mathbb{N}$\uncover<3->{:
+$\Rightarrow$
+$\mathbb{Z}\subset \Bbbk$}
+\uncover<4->{%
+$\Rightarrow$
+$\mathbb{Q}\subset \Bbbk$}
+\item<5->
+$\{n\mathbb{Z}\;|\;
+\text{$n\cdot 1 = 0$ in $\Bbbk$}\}
+=
+p\mathbb{Z}$
+\uncover<6->{
+$\Rightarrow$
+$\mathbb{F}_p\subset \Bbbk$}
+\end{enumerate}
+\end{block}
+\uncover<7->{%
+\begin{block}{Primkörper}
+Der Primkörper $\operatorname{Prim}(\Bbbk)$
+eines Körpers $\Bbbk$ ist der kleinste in $\Bbbk$
+enthaltene Körper
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Charakteristik}
+\vspace{-10pt}
+\[
+\operatorname{char}(\Bbbk)
+=
+\begin{cases}
+\uncover<9->{p&\qquad \operatorname{Prim}(\Bbbk) = \mathbb{F}_p}\\
+\uncover<10->{0&\qquad \operatorname{Prim}(\Bbbk) = \mathbb{Q}}
+\end{cases}
+\]
+\vspace{-10pt}
+\end{block}}
+\uncover<11->{%
+\begin{block}{Vektorraum}
+$\Bbbk$ ist ein Vektorraum über $\operatorname{Prim}(\Bbbk)$
+durch Einschränkung der Multiplikation auf $\operatorname{Prim}(\Bbbk)$
+(Körperstruktur vergessen)
+\end{block}}
+\uncover<12->{%
+\begin{block}{Endliche Körper}
+\begin{itemize}
+\item<13->
+Endliche Körper haben immer Charakteristik $p\ne 0$
+\item<14->
+$\Bbbk$ ist eine endlichdimensionaler $\mathbb{F}_p$-Vektorraum
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/euklidmatrix.tex b/vorlesungen/slides/4/euklidmatrix.tex
index be5b3ca..c63afec 100644
--- a/vorlesungen/slides/4/euklidmatrix.tex
+++ b/vorlesungen/slides/4/euklidmatrix.tex
@@ -18,7 +18,7 @@ a_k = b_kq_k + r_k
\;\Rightarrow\;
\left\{
\begin{aligned}
-a_{k+1} &= b_k = \phantom{a_k-q_k}\llap{$-\mathstrut$}b_k \\
+a_{k+1} &= b_k = \phantom{a_k-q_k}b_k \\
b_{k+1} &= \phantom{b_k}\llap{$r_k$} = a_k - q_kb_k
\end{aligned}
\right.}
diff --git a/vorlesungen/slides/4/frobenius.tex b/vorlesungen/slides/4/frobenius.tex
new file mode 100644
index 0000000..56fd78f
--- /dev/null
+++ b/vorlesungen/slides/4/frobenius.tex
@@ -0,0 +1,54 @@
+%
+% frobenius.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Frobenius-Automorphismus}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+$\operatorname{Prim}(\Bbbk) = \mathbb{F}_p$
+\uncover<2->{%
+\begin{block}{Binomial-Koeffizienten}
+\vspace{-10pt}
+\begin{align*}
+\binom{p}{k}
+&=
+\frac{
+{\color{red}p}\cdot(p-1)\cdot(p-2)\cdot\dots\cdot (p-k+1)
+}{
+1\cdot2\cdot3\cdot\dots\cdot k
+}
+\intertext{{\color{red}$p$} wird nicht gekürzt wegen}
+\uncover<3->{1&\not\equiv 0 \mod p}\\
+\uncover<3->{2&\not\equiv 0 \mod p}\\
+\uncover<3->{ &\phantom{a}\vdots}\\
+\uncover<3->{k&\not\equiv 0 \mod p}
+\end{align*}
+\vspace{-10pt}
+\end{block}}
+\vspace{-5pt}
+\uncover<4->{%
+\begin{block}{Frobenius-Authomorphismus}
+\vspace{-10pt}
+\begin{align*}
+\uncover<5->{(x+y)^{p\phantom{\mathstrut^n}}
+&=
+x^{p\phantom{\mathstrut}^n}+y^{p\phantom{mathstrut^n}}}
+\\
+\uncover<6->{(x+y)^{p^n} &= x^{p^n}+y^{p^n}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Pascal-Dreieck}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/30-endlichekoerper/images/binomial5.pdf}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/aufloesbarkeit.tex b/vorlesungen/slides/4/galois/aufloesbarkeit.tex
new file mode 100644
index 0000000..ef5902b
--- /dev/null
+++ b/vorlesungen/slides/4/galois/aufloesbarkeit.tex
@@ -0,0 +1,120 @@
+%
+% aufloesbarkeit.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Auflösbarkeit}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Radikalerweiterung}
+Automorphismen $f\in \operatorname{Gal}(\Bbbk(\alpha)/\Bbbk)$
+einer Radikalerweiterung
+\[
+\Bbbk \subset \Bbbk(\alpha)
+\]
+sind festgelegt durch Wahl von $f(\alpha)$.
+
+\begin{itemize}
+\item<3-> Warum: Alle $f(\alpha^k)$ sind auch festgelegt
+\item<4-> $f(\alpha)$ muss eine andere Nullstelle des Minimalpolynoms sein
+\end{itemize}
+
+\end{block}}
+\uncover<8->{%
+\begin{block}{Irreduzibles Polynom $m(X)\in\mathbb{Q}[X]$}
+$\mathbb{Q}\subset \Bbbk$,
+$n$ verschiedene Nullstellen $\mathbb{C}$:
+\[
+\uncover<9->{
+\operatorname{Gal}(\Bbbk/\mathbb{Q})
+\cong
+S_n}
+\uncover<10->{
+\quad
+\text{auflösbar?}}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{\uncover<5->{Galois-Gruppen}}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{1.2}
+
+\uncover<2->{
+\fill[color=blue!20] (-1.1,-0.3) rectangle (0.3,{5*\s+0.3});
+\node[color=blue] at (-0.7,{2.5*\s}) [rotate=90] {Radikalerweiterungen};
+}
+
+\node at (0,0) {$\mathbb{Q}$};
+\node at (0,{1*\s}) {$E_1$};
+\node at (0,{2*\s}) {$E_2$};
+\node at (0,{3*\s}) {$E_3$};
+\node at (0,{4*\s}) {$\vdots\mathstrut$};
+\node at (0,{5*\s}) {$\Bbbk$};
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{0*\s}) -- (0,{1*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{1*\s}) -- (0,{2*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{2*\s}) -- (0,{3*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{3*\s}) -- (0,{4*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{4*\s}) -- (0,{5*\s});
+
+\begin{scope}[xshift=0.5cm]
+\uncover<7->{
+\fill[color=red!20] (0,{0*\s-0.3}) rectangle (4.8,{5*\s+0.3});
+\node[color=red] at (4.5,{2.5*\s}) [rotate=90] {Auflösung der Galois-Gruppe};
+}
+\uncover<5->{
+\node at (0,{0*\s}) [right] {$\operatorname{Gal}(\Bbbk/\mathbb{Q})$};
+\node at (0,{1*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_1)$};
+\node at (0,{2*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_2)$};
+\node at (0,{3*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_3)$};
+\node at (1,{4*\s}) {$\vdots\mathstrut$};
+\node at (0,{5*\s}) [right] {$\operatorname{Gal}(\Bbbk/\Bbbk)$};
+\node at (1,{0.5*\s}) {$\cap\mathstrut$};
+\node at (1,{1.5*\s}) {$\cap\mathstrut$};
+\node at (1,{2.5*\s}) {$\cap\mathstrut$};
+\node at (1,{3.5*\s}) {$\cap\mathstrut$};
+\node at (1,{4.5*\s}) {$\cap\mathstrut$};
+}
+
+\uncover<6->{
+\begin{scope}[xshift=2.5cm]
+\node at (0,{0*\s}) {$G_n$};
+\node at (0,{1*\s}) {$G_{n-1}$};
+\node at (0,{2*\s}) {$G_{n-2}$};
+\node at (0,{3*\s}) {$G_{n-3}$};
+\node at (0,{5*\s}) {$G_0=\{e\}$};
+\node at (0,{0.5*\s}) {$\cap\mathstrut$};
+\node at (0,{1.5*\s}) {$\cap\mathstrut$};
+\node at (0,{2.5*\s}) {$\cap\mathstrut$};
+\node at (0,{3.5*\s}) {$\cap\mathstrut$};
+\node at (0,{4.5*\s}) {$\cap\mathstrut$};
+}
+
+\uncover<7->{
+\node[color=red] at (0.2,{0.5*\s+0.1}) [right] {\tiny $G_n/G_{n-1}$};
+\node[color=red] at (0.2,{0.5*\s-0.1}) [right] {\tiny abelsch};
+
+\node[color=red] at (0.2,{1.5*\s+0.1}) [right] {\tiny $G_{n-1}/G_{n-2}$};
+\node[color=red] at (0.2,{1.5*\s-0.1}) [right] {\tiny abelsch};
+
+\node[color=red] at (0.2,{2.5*\s+0.1}) [right] {\tiny $G_{n-2}/G_{n-3}$};
+\node[color=red] at (0.2,{2.5*\s-0.1}) [right] {\tiny abelsch};
+}
+
+\end{scope}
+\end{scope}
+
+
+
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/automorphismus.tex b/vorlesungen/slides/4/galois/automorphismus.tex
new file mode 100644
index 0000000..6051813
--- /dev/null
+++ b/vorlesungen/slides/4/galois/automorphismus.tex
@@ -0,0 +1,118 @@
+%
+% automorphismus.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{4pt}
+\setlength{\belowdisplayskip}{4pt}
+\frametitle{Galois-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{3.0}
+\begin{scope}[xshift=-1.5cm]
+\node at (0,{\s+0.1}) [above] {Körpererweiterung\strut};
+\node at (0,{\s}) {$G$};
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{-\s}) -- (0,0);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{\s}) -- (0,0);
+\node at (0,{-0.5*\s}) [left] {$[F:E]$};
+\node at (0,{0.5*\s}) [left] {$[G:F]$};
+\node at (0,0) {$F$};
+\node at (0,{-\s}) {$E$};
+\end{scope}
+\uncover<3->{
+\begin{scope}[xshift=1.8cm]
+\node at (0,{\s+0.1}) [above] {Gruppe\strut};
+\fill (0,{-\s}) circle[radius=0.06];
+\fill (0,0) circle[radius=0.06];
+\fill (0,{\s}) circle[radius=0.06];
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,{-\s}) to[out=100,in=-100] (0,{\s});
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,{-\s}) to[out=80,in=-80] (0,0);
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,0) to[out=80,in=-80] (0,{\s});
+\node at (-0.6,0) [rotate=90] {$\operatorname{Gal}(G/E)$};
+\node at (0.45,{0.5*\s}) [rotate=90] {$\operatorname{Gal}(G/F)$};
+\node at (0.45,{-0.5*\s}) [rotate=90] {$\operatorname{Gal}(F/E)$};
+\end{scope}
+\draw[->,color=red!20,line width=14pt] (-1.4,{0.6*\s}) -- (1.4,{0.6*\s});
+\node[color=red] at (0,{0.6*\s}) {$\operatorname{Gal}$};
+}
+\uncover<4->{
+\draw[<-,color=blue!20,line width=14pt] (-1.4,{-0.6*\s}) -- (1.4,{-0.6*\s});
+\node[color=blue] at (0,{-0.6*\s}) {$\operatorname{Fix}, F^H$};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<2->{%
+\begin{block}{Automorphismus}
+\vspace{-10pt}
+\[
+\operatorname{Aut}(F)
+=
+\left\{
+f\colon F\to F
+\left|
+\begin{aligned}
+f(x+y)&=f(x)+f(y)\\
+f(xy)&=f(x)f(y)
+\end{aligned}
+\right.
+\right\}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{block}{Galois-Gruppe}
+Automorphismen, die $E$ festlassen
+\[
+{\color{red}
+\operatorname{Gal}(F/E)
+}
+=
+\left\{
+\varphi\in\operatorname{Aut}(F)\;|\; \varphi(x)=x\forall x\in E
+\right\}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<4->{%
+\begin{block}{Fixkörper}
+$H\subset \operatorname{Aut}(F)$:
+\begin{align*}
+{\color{blue}F^H}
+&=
+\{x\in F\;|\; hx = x\forall h\in H\}
+=\operatorname{Fix}(H)
+\end{align*}
+\end{block}}
+\vspace{-13pt}
+\uncover<5->{%
+\begin{block}{Beispiel}
+\begin{itemize}
+\item<6->
+\(
+\operatorname{Gal}(\mathbb{C}/\mathbb{R})
+=
+\{
+\operatorname{id}_{\mathbb{C}},
+\operatorname{conj}\colon z\mapsto\overline{z}
+\}
+\)
+\item<7->
+\(
+\mathbb{C}^{\operatorname{conj}}
+=
+\mathbb{R}
+\)
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/erweiterung.tex b/vorlesungen/slides/4/galois/erweiterung.tex
new file mode 100644
index 0000000..6909849
--- /dev/null
+++ b/vorlesungen/slides/4/galois/erweiterung.tex
@@ -0,0 +1,65 @@
+%
+% erweiterung.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Körpererweiterungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Körpererweiterung}
+$E,F$ Körper: $E\subset F$
+\end{block}
+\uncover<6->{%
+\begin{block}{Vektorraum}
+$F$ ist ein Vektorraum über $E$
+\end{block}}
+\uncover<7->{%
+\begin{block}{Endliche Körpererweiterung}
+$\dim_E F < \infty$
+\end{block}}
+\uncover<8->{%
+\begin{block}{Adjunktion eines $\alpha$}
+$\Bbbk(\alpha)$ kleinster Körper, der $\Bbbk$ und
+$\alpha$ enthält.
+\end{block}}
+\uncover<9->{%
+\begin{block}{Algebraische Erweiterung}
+$\alpha$ algebraisch über $\Bbbk$, i.~e.~Nullstelle von
+$m(X)\in\Bbbk[X]$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiele}
+\begin{enumerate}
+\item<3->
+$\mathbb{R} \subset \mathbb{R}(i) = \mathbb{C}$
+\item<4->
+$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})$
+\item<5->
+$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$
+\end{enumerate}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Grad}
+$E\subset F$ heisst Körpererweiterung vom Grad $n$, falls
+\[
+\dim_E F = n =: [F:E]
+\]
+\uncover<8->{%
+Gleichbedeutend: $\deg m(X) = n$}
+\uncover<10->{%
+\[
+E\subset F\subset G
+\Rightarrow
+[G:E] = [G:F]\cdot [F:E]
+\]
+(in unseren Fällen)}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/images/Makefile b/vorlesungen/slides/4/galois/images/Makefile
new file mode 100644
index 0000000..444944e
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/Makefile
@@ -0,0 +1,12 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: wuerfel2.png wuerfel.png
+
+wuerfel.png: wuerfel.pov common.inc
+ povray +A0.1 -W1080 -H1080 -Owuerfel.png wuerfel.pov
+
+wuerfel2.png: wuerfel2.pov common.inc
+ povray +A0.1 -W1080 -H1080 -Owuerfel2.png wuerfel2.pov
diff --git a/vorlesungen/slides/4/galois/images/common.inc b/vorlesungen/slides/4/galois/images/common.inc
new file mode 100644
index 0000000..6cfcabe
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/common.inc
@@ -0,0 +1,89 @@
+//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+#include "textures.inc"
+#include "stones.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.133;
+#declare O = <0, 0, 0>;
+#declare E = <1, 1, 1>;
+#declare a = pow(2, 1/3);
+#declare at = 0.02;
+
+camera {
+ location <3, 2, 12>
+ look_at E * (a / 2) * 0.93
+ right x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <11, 20, 16> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro wuerfelgitter(A, AT)
+ cylinder { O, <A, 0, 0>, AT }
+ cylinder { O, <0, A, 0>, AT }
+ cylinder { O, <0, 0, A>, AT }
+ cylinder { <A, 0, 0>, <A, A, 0>, AT }
+ cylinder { <A, 0, 0>, <A, 0, A>, AT }
+ cylinder { <0, A, 0>, <A, A, 0>, AT }
+ cylinder { <0, A, 0>, <0, A, A>, AT }
+ cylinder { <0, 0, A>, <A, 0, A>, AT }
+ cylinder { <0, 0, A>, <0, A, A>, AT }
+ cylinder { <A, A, 0>, <A, A, A>, AT }
+ cylinder { <A, 0, A>, <A, A, A>, AT }
+ cylinder { <0, A, A>, <A, A, A>, AT }
+ sphere { <0, 0, 0>, AT }
+ sphere { <A, 0, 0>, AT }
+ sphere { <0, A, 0>, AT }
+ sphere { <0, 0, A>, AT }
+ sphere { <A, A, 0>, AT }
+ sphere { <A, 0, A>, AT }
+ sphere { <0, A, A>, AT }
+ sphere { <A, A, A>, AT }
+#end
+
+#macro wuerfel()
+ union {
+ box { O, E }
+ wuerfelgitter(1, 0.5*at)
+ texture {
+ T_Grnt24
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
+
+#macro wuerfel2()
+ union {
+ wuerfelgitter(a, at)
+ pigment {
+ color rgb<0.8,0.4,0.4>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
diff --git a/vorlesungen/slides/4/galois/images/wuerfel.png b/vorlesungen/slides/4/galois/images/wuerfel.png
new file mode 100644
index 0000000..ff6fc14
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel.png
Binary files differ
diff --git a/vorlesungen/slides/4/galois/images/wuerfel.pov b/vorlesungen/slides/4/galois/images/wuerfel.pov
new file mode 100644
index 0000000..a5db465
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel.pov
@@ -0,0 +1,9 @@
+//
+// wuerfel.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+wuerfel()
+
diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.png b/vorlesungen/slides/4/galois/images/wuerfel2.png
new file mode 100644
index 0000000..68919cc
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel2.png
Binary files differ
diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.pov b/vorlesungen/slides/4/galois/images/wuerfel2.pov
new file mode 100644
index 0000000..ac32b2f
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel2.pov
@@ -0,0 +1,9 @@
+//
+// wuerfel.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+wuerfel()
+wuerfel2()
diff --git a/vorlesungen/slides/4/galois/konstruktion.tex b/vorlesungen/slides/4/galois/konstruktion.tex
new file mode 100644
index 0000000..094b570
--- /dev/null
+++ b/vorlesungen/slides/4/galois/konstruktion.tex
@@ -0,0 +1,147 @@
+%
+% konstruktion.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Konstruktion mit Zirkel und Lineal}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Strahlensatz}
+\uncover<6->{%
+Jedes beliebige rationale Streckenverhältnis $\frac{p}{q}$
+kann mit Zirkel und Lineal konstruiert werden.}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Kreis--Gerade}
+Aus $c$ und $a$ konstruiere $b=\sqrt{c^2-a^2}$
+\uncover<13->{%
+$\Rightarrow$ jede beliebige Quadratwurzel kann konstruiert werden}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{0.5}
+\def\t{0.45}
+
+\coordinate (A) at (0,0);
+\coordinate (B) at ({10*\t},0);
+
+\uncover<2->{
+ \draw (0,0) -- (30:{10.5*\s});
+}
+
+\uncover<3->{
+ \foreach \x in {0,...,10}{
+ \fill (30:{\x*\s}) circle[radius=0.03];
+ }
+ \foreach \x in {0,1,2,3,4,7,8,9}{
+ \node at (30:{\x*\s}) [above] {\tiny $\x$};
+ }
+ \node at (30:{10*\s}) [above right] {$q=10$};
+}
+
+\uncover<4->{
+ \foreach \x in {1,...,10}{
+ \fill (0:{\x*\t}) circle[radius=0.03];
+ \draw[->,line width=0.2pt] (30:{\x*\s}) -- (0:{\x*\t});
+ }
+}
+
+\draw (A) -- (0:{10.5*\t});
+\node at (A) [below left] {$A$};
+\node at (B) [below right] {$B$};
+\fill (A) circle[radius=0.05];
+\fill (B) circle[radius=0.05];
+
+\uncover<5->{
+ \node at (30:{6*\s}) [above left] {$p=6$};
+ \draw[line width=0.2pt] (0,0) -- (0,-0.4);
+ \draw[line width=0.2pt] ({6*\t},0) -- ({6*\t},-0.4);
+ \draw[<->] (0,-0.3) -- ({6*\t},-0.3);
+ \node at ({3*\t},-0.4) [below]
+ {$\displaystyle\frac{p}{q}\cdot\overline{AB}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+%\foreach \x in {8,...,14}{
+% \only<\x>{\node at (4,4) {$\x$};}
+%}
+
+\def\r{4}
+\def\a{50}
+
+\coordinate (A) at ({\r*cos(\a)},0);
+
+\uncover<10->{
+ \fill[color=gray] (\r,0) -- (\r,0.3) arc (90:180:0.3) -- cycle;
+ \fill[color=gray]
+ (95:\r) -- ($(95:\r)+(185:0.3)$) arc (185:275:0.3) -- cycle;
+}
+
+\draw[->] (0,0) -- (95:\r);
+\node at (95:{0.5*\r}) [left] {$c$};
+
+\begin{scope}
+ \clip (-1,-0.3) rectangle (4.5,4.1);
+ \uncover<10->{
+ \draw (-1,0) -- (5,0);
+ \draw[->] (0,0) -- (\r,0);
+ \draw (0,0) circle[radius=\r];
+ \draw ({\r*cos(\a)},-1) -- ({\r*cos(\a)},5);
+ }
+\end{scope}
+
+\uncover<11->{
+ \fill[color=blue!20] (0,0) -- (A) -- (\a:\r) -- cycle;
+}
+
+\uncover<9->{
+ \fill[color=gray!80] (A) -- ($(A)+(0,0.5)$) arc (90:180:0.5) -- cycle;
+ \fill[color=gray!120] ($(A)+(-0.2,0.2)$) circle[radius=0.07];
+ \draw ({\r*cos(\a)},-0.3) -- ({\r*cos(\a)},4.1);
+}
+
+\uncover<11->{
+ \draw[color=blue,line width=1.4pt] (0,0) -- (\a:\r);
+ \node[color=blue] at (\a:{0.5*\r}) [above left] {$c$};
+}
+
+\draw[color=blue,line width=1.4pt] (0,0) -- ({\r*cos(\a)},0);
+\fill[color=blue] (0,0) circle[radius=0.04];
+\fill[color=blue] (A) circle[radius=0.04];
+\node[color=blue] at ({0.5*\r*cos(\a)},0) [below] {$a$};
+
+\uncover<12->{
+ \fill[color=white,opacity=0.8]
+ ({\r*cos(\a)+0.1},{0.5*\r*sin(\a)-0.25})
+ rectangle
+ ({\r*cos(\a)+2},{0.5*\r*sin(\a)+0.25});
+
+ \node[color=red] at ({\r*cos(\a)},{0.5*\r*sin(\a)}) [right]
+ {$b=\sqrt{c^2-a^2}$};
+ \draw[color=red,line width=1.4pt] ({\r*cos(\a)},0) -- (\a:\r);
+ \fill[color=red] (\a:\r) circle[radius=0.05];
+ \fill[color=red] (A) circle[radius=0.05];
+}
+
+\end{tikzpicture}
+\end{center}}
+\end{column}
+\end{columns}
+\uncover<14->{{\usebeamercolor[fg]{title}Folgerung:}
+Konstruierbar sind Körpererweiterungen $[F:E] = 2^l$}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/quadratur.tex b/vorlesungen/slides/4/galois/quadratur.tex
new file mode 100644
index 0000000..f5763b9
--- /dev/null
+++ b/vorlesungen/slides/4/galois/quadratur.tex
@@ -0,0 +1,66 @@
+%
+% quadratur.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Quadratur des Kreises}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{center}
+\uncover<2->{%
+\begin{tikzpicture}[>=latex,thick]
+
+\def\r{2.8}
+\pgfmathparse{sqrt(3.14159)*\r/2}
+\xdef\s{\pgfmathresult}
+
+\fill[color=blue!20] (-\s,-\s) rectangle (\s,\s);
+\fill[color=red!40,opacity=0.5] (0,0) circle[radius=\r];
+
+\uncover<3->{
+ \draw[->,color=red] (0,0) -- (50:\r);
+ \fill[color=red] (0,0) circle[radius=0.04];
+ \node[color=red] at (50:{0.5*\r}) [below right] {$r$};
+}
+
+\uncover<4->{
+ \draw[line width=0.3pt] (-\s,-\s) -- (-\s,{-\s-0.7});
+ \draw[line width=0.3pt] (\s,-\s) -- (\s,{-\s-0.7});
+ \draw[<->,color=blue] (-\s,{-\s-0.6}) -- (\s,{-\s-0.6});
+ \node[color=blue] at (0,{-\s-0.6}) [below] {$l$};
+}
+
+\uncover<5->{
+ \node at (0,{-\s/2}) {${\color{red}\pi r^2}={\color{blue}l^2}
+ \;\Rightarrow\;
+ {\color{blue}l}={\color{red}\sqrt{\pi}r}$};
+}
+
+\end{tikzpicture}}
+\end{center}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Aufgabe}
+Konstruiere ein zu einem Kreis flächengleiches Quadrat
+\end{block}
+\uncover<6->{%
+\begin{block}{Modifizierte Aufgabe}
+Konstruiere eine Strecke, deren Länge Lösung der Gleichung
+$x^2-\pi=0$ ist.
+\end{block}}
+\uncover<7->{%
+\begin{proof}[Unmöglichkeitsbeweis mit Widerspruch]
+\begin{itemize}
+\item<8-> Lösung in einem Erweiterungskörper
+\item<9-> Lösung ist Nullstelle eines Polynoms
+\item<10-> Lösung ist algebraisch
+\item<11-> $\pi$ ist {\bf nicht} algebraisch
+\uncover<12->{(Lindemann 1882\only<13>{, Weierstrass 1885})}
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/radikale.tex b/vorlesungen/slides/4/galois/radikale.tex
new file mode 100644
index 0000000..e9e4ce8
--- /dev/null
+++ b/vorlesungen/slides/4/galois/radikale.tex
@@ -0,0 +1,69 @@
+%
+% radikale.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lösung durch Radikale}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Problemstellung}
+Finde Nullstellen eines Polynomes
+\[
+p(X)
+=
+a_nX^n + a_{n-1}X^{n-1}
++\dots+
+a_1X+a_0
+\]
+$p\in\mathbb{Q}[X]$
+\end{block}
+\uncover<2->{%
+\begin{block}{Radikale}
+Geschachtelte Wurzelausdrücke
+\[
+\sqrt[3]{
+-\frac{q}2 +\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
+}
++
+\sqrt[3]{
+-\frac{q}2 -\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
+}
+\]
+\uncover<3->{(Lösung von $x^3+px+q=0$)}
+\end{block}}
+\uncover<4->{%
+\begin{block}{Lösbar durch Radikale}
+Nullstelle von $p(X)$ ist ein Radikal
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Algebraische Formulierung}
+Gegeben ein irreduzibles Polynom $p\in\mathbb{Q}[X]$,
+finde eine Körpererweiterung $\mathbb{Q}\subset\Bbbk$, derart,
+dass $p$ in $\Bbbk$ eine Nullstelle hat\uncover<6->{:
+$\Bbbk = \mathbb{Q}[X]/(p)$}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Radikalerweiterung}
+Körpererweiterung $\Bbbk\subset\Bbbk'$ um $\alpha$ mit einer der Eigenschaften
+\begin{itemize}
+\item<8-> $\alpha$ ist eine Einheitswurzel
+\item<9-> $\alpha^k\in\Bbbk$
+\end{itemize}
+\end{block}}
+\vspace{-5pt}
+\uncover<10->{%
+\begin{block}{Lösbar durch Radikale}
+Radikalerweiterungen
+\[
+\mathbb{Q} \subset \Bbbk \subset \Bbbk' \subset \dots \subset \Bbbk'' \ni \alpha
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/sn.tex b/vorlesungen/slides/4/galois/sn.tex
new file mode 100644
index 0000000..1cae3fa
--- /dev/null
+++ b/vorlesungen/slides/4/galois/sn.tex
@@ -0,0 +1,87 @@
+%
+% sn.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Nichtauflösbarkeit von $S_n$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Die symmetrische Gruppe $S_n$}
+Permutationen auf $n$ Elementen
+\[
+\sigma
+=
+\begin{pmatrix}
+1&2&3&\dots&n\\
+\sigma(1)&\sigma(2)&\sigma(3)&\dots&\sigma(n)
+\end{pmatrix}
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Signum}
+$t(\sigma)=\mathstrut$ Anzahl Transpositionen
+\[
+\operatorname{sgn}(\sigma)
+=
+(-1)^{t(\sigma)}
+=
+\begin{cases}
+\phantom{-}1&\text{$t(\sigma)$ gerade}
+\\
+-1&\text{$t(\sigma)$ ungerade}
+\end{cases}
+\]
+Homomorphismus!
+\end{block}}
+\uncover<3->{%
+\begin{block}{Die alternierende Gruppe $A_n$}
+\vspace{-12pt}
+\[
+A_n = \ker \operatorname{sgn}
+=
+\{\sigma\in S_n\;|\;\operatorname{sgn}(\sigma)=1\}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Normale Untergruppe}
+\begin{itemize}
+\item
+$H\triangleleft G$ wenn $gHg^{-1}\subset G\;\forall g\in G$
+\item
+$G/N$ ist wohldefiniert
+\end{itemize}
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Einfache Gruppe}
+$G$ einfach $\Leftrightarrow$
+\[
+H\triangleleft G
+\;
+\Rightarrow
+\;
+\text{$H=\{e\}$ oder $H=G$}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<6->{%
+\begin{block}{$n\ge 5 \Rightarrow A_n \text{ einfach}$}
+\begin{enumerate}
+\item<7-> Zeigen, dass $A_5$ einfach ist
+\item<8-> Vollständige Induktion: $A_n$ einfach $\Rightarrow A_{n+1}$ einfach
+\end{enumerate}
+\uncover<9->{%
+$\Rightarrow$ i.~A.~keine Lösung der
+einer Polynomgleichung vom Grad $\ge 5$ durch Radikale
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/winkeldreiteilung.tex b/vorlesungen/slides/4/galois/winkeldreiteilung.tex
new file mode 100644
index 0000000..54b941b
--- /dev/null
+++ b/vorlesungen/slides/4/galois/winkeldreiteilung.tex
@@ -0,0 +1,94 @@
+%
+% winkeldreiteilung.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Winkeldreiteilung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.43\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\r{5}
+\def\a{25}
+
+\uncover<3->{
+ \draw[line width=0.7pt] (\r,0) arc (0:90:\r);
+}
+
+\fill[color=blue!20] (0,0) -- (\r,0) arc(0:{3*\a}:\r) -- cycle;
+\node[color=blue] at ({1.5*\a}:{1.05*\r}) {$\alpha$};
+
+\draw[color=blue,line width=1.3pt] (\r,0) arc (0:{3*\a}:\r);
+
+\uncover<2->{
+ \fill[color=red!40,opacity=0.5] (0,0) -- (\r,0) arc(0:\a:\r) -- cycle;
+ \draw[color=red,line width=1.4pt] (\r,0) arc (0:\a:\r);
+ \node[color=red] at ({0.5*\a}:{0.7*\r})
+ {$\displaystyle\frac{\alpha}{3}$};
+}
+
+\uncover<3->{
+ \fill[color=blue] ({3*\a}:\r) circle[radius=0.05];
+ \draw[color=blue] ({3*\a}:\r) -- ({\r*cos(3*\a)},-0.1);
+
+ \fill[color=red] ({\a}:\r) circle[radius=0.05];
+ \draw[color=red] ({\a}:\r) -- ({\r*cos(\a)},-0.1);
+
+ \draw[->] (-0.1,0) -- ({\r+0.4},0) coordinate[label={$x$}];
+ \draw[->] (0,-0.1) -- (0,{\r+0.4}) coordinate[label={right:$y$}];
+}
+
+
+\uncover<4->{
+\node at ({0.5*\r},-0.5) [below] {$\displaystyle
+\cos{\color{blue}\alpha}
+=
+4\cos^3{\color{red}\frac{\alpha}3} -3 \cos {\color{red}\frac{\alpha}3}
+$};
+}
+
+\uncover<5->{
+ \node[color=blue] at ({\r*cos(3*\a)},0) [below] {$a\mathstrut$};
+ \node[color=red] at ({\r*cos(\a)},0) [below] {$x\mathstrut$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.53\textwidth}
+\begin{block}{Aufgabe}
+Teile einen Winkel in drei gleiche Teile
+\end{block}
+\vspace{-2pt}
+\uncover<6->{%
+\begin{block}{Algebraisierte Aufgabe}
+Konstruiere $x$ aus $a$ derart, dass
+\[
+p(x)
+=
+x^3-\frac34 x -a = 0
+\]
+\uncover<7->{%
+$a=0$:}
+\uncover<8->{$p(x) = x(x^2-\frac{3}{4})\uncover<9->{\Rightarrow x = \frac{\sqrt{3}}2}$}
+\end{block}}
+\vspace{-2pt}
+\uncover<10->{%
+\begin{proof}[Unmöglichkeitsbeweis]
+\begin{itemize}
+\item<11->
+$a\ne 0$ $\Rightarrow$ $p(x)$ irreduzibel
+\item<12->
+$p(x)$ definiert eine Körpererweiterung vom Grad $3$
+\item<13->
+Konstruierbar sind nur Körpererweiterungen vom Grad $2^l$
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/wuerfel.tex b/vorlesungen/slides/4/galois/wuerfel.tex
new file mode 100644
index 0000000..ada6079
--- /dev/null
+++ b/vorlesungen/slides/4/galois/wuerfel.tex
@@ -0,0 +1,64 @@
+%
+% wuerfel.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Würfelverdoppelung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel.png}};
+\uncover<2->{
+\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel2.png}};
+}
+
+\uncover<3->{
+ \draw[<->,color=blue] (-1.25,-2.4) -- (2.55,-2.25);
+ \node[color=blue] at (0.75,-2.3) [above] {$a$};
+}
+
+\uncover<4->{
+ \begin{scope}[yshift=0.03cm]
+ \draw[color=red] (-2.13,-2.89) -- (-2.13,-3.19);
+ \draw[color=red] (2.85,-2.7) -- (2.85,-3.0);
+ \draw[<->,color=red] (-2.13,-3.09) -- (2.85,-2.9);
+ \end{scope}
+ \node[color=red] at (0.36,-2.9) [below] {$b$};
+}
+
+\uncover<5->{
+\node at (0,-4) {$
+ 2{\color{blue}a}^3={\color{red}b}^3
+ \uncover<6->{\;\Rightarrow\;
+ \frac{b}{a} = \sqrt[3]{2}}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Aufgabe}
+Konstruiere einen Würfel mit doppeltem Volumen
+\end{block}
+\uncover<7->{%
+\begin{block}{Algebraisierte Aufgabe}
+Konstruiere eine Nullstelle von $p(x)=x^3-2$
+\end{block}}
+\uncover<8->{%
+\begin{proof}[Unmöglichkeitsbeweis]
+\begin{itemize}
+\item<9->
+$p(x)$ irreduzibel
+\item<10->
+$p(x)$ definiert eine Körpererweiterung vom Grad $3$
+\item<11->
+Nur Körpererweiterungen vom Grad $2^l$ sind konstruierbar
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/qundr.tex b/vorlesungen/slides/4/qundr.tex
new file mode 100644
index 0000000..a6f89bd
--- /dev/null
+++ b/vorlesungen/slides/4/qundr.tex
@@ -0,0 +1,138 @@
+%
+% qundr.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\definecolor{darkblue}{rgb}{0,0,0.8}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (ll) at (-6,-3.6);
+\coordinate (lr) at (6,-3.6);
+\coordinate (ur) at (6,3.6);
+\coordinate (ul) at (-6,3.6);
+
+\def\d{0.6}
+\def\D{0.5}
+
+\coordinate (q) at (0,{-2.25+\d});
+\coordinate (r) at (-1.5,{\d+\D});
+\coordinate (a) at (1.5,{\d-\D});
+\coordinate (c) at (0,{2.25+\d});
+
+\coordinate (m1) at ($0.5*(q)+0.5*(r)$);
+\coordinate (m2) at ($0.5*(q)+0.5*(a)$);
+\coordinate (m3) at ($0.5*(c)+0.5*(r)$);
+\coordinate (m4) at ($0.5*(c)+0.5*(a)$);
+
+\def\t{1.5}
+\coordinate (M1) at ($(m1)+\t*(m1)-\t*(m4)$);
+\coordinate (M2) at ($(m2)+\t*(m2)-\t*(m3)$);
+\coordinate (M4) at ($(m4)+\t*(m4)-\t*(m1)$);
+\coordinate (M3) at ($(m3)+\t*(m3)-\t*(m2)$);
+
+\begin{scope}
+\clip (ll) rectangle (ur);
+
+\uncover<3->{
+ \fill[color=blue!30]
+ ($0.9*(m1)+0.1*(M1)+(-6,0)$) -- ($0.9*(m1)+0.1*(M1)$)
+ -- (M4) -- (ul) -- cycle;
+}
+
+\uncover<4->{
+ \fill[color=red!60,opacity=0.5]
+ ($0.9*(m2)+0.1*(M2)$) -- ($0.9*(m2)+0.1*(M2)+(6,0)$)
+ -- (ur) -- (M3) -- cycle;
+}
+
+\uncover<2->{
+ \fill[color=darkgreen!60,opacity=0.5]
+ ($1.09*(m3)-0.09*(M3)$) -- ($1.09*(m3)-0.09*(M3)+(-6,0)$)
+ -- (ll) -- (M2) -- cycle;
+}
+
+\uncover<6->{
+ \fill[color=gray,opacity=0.5]
+ ({6-0.1},{\d+0.22}) rectangle ({6-2.4},{\d+0.62});
+ \node[color=yellow] at (6,\d) [above left] {überabzählbar\strut};
+
+ \fill[color=gray,opacity=0.5]
+ ({-6+0.1},{\d-0.15}) rectangle ({-6+1.75},{\d-0.55});
+ \node[color=yellow] at (-6,\d) [below right] {abzählbar\strut};
+
+ \draw[color=yellow,line width=2pt] (-7,\d) -- (7,\d);
+}
+
+\end{scope}
+
+\node at (q) {$\mathbb{Q}$\strut};
+\node at ($(q)+(0,-0.2)$) [below] {Primkörper};
+
+\uncover<3->{
+ \node at (r) {$\mathbb{R}$\strut};
+ \node at (r) [left] {$\text{reelle Zahlen}=\mathstrut$};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (r);
+ \node at ($0.5*(q)+0.5*(r)$)
+ [below,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
+ \node[color=blue] at (ul)
+ [above right] {topologische Vervollständigung};
+}
+
+\uncover<4->{
+ \node at (a) {$\mathbb{A}$\strut};
+ \node at (a) [right] {$\mathstrut = \text{algebraische Zahlen}$};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (a);
+ \node at ($0.5*(q)+0.5*(a)$)
+ [below,rotate={atan((2.25-\D)/1.5)}] {index $\infty$};
+ \node[color=red] at (ur)
+ [above left] {algebraische Vervollständigung};
+}
+
+\uncover<5->{
+ \node at (c) {$\mathbb{C}$\strut};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (r) -- (c);
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (a) -- (c);
+ \node at ($(c)+(0,0.2)$) [above] {komplexe Zahlen};
+ \node at ($0.5*(r)+0.5*(c)$)
+ [above,rotate={atan((2.25-\D)/1.5)}] {index 2};
+ \node at ($0.5*(a)+0.5*(c)$)
+ [above,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
+}
+
+\uncover<3->{
+ \node[color=darkblue] at (ul) [below right]
+ {\begin{minipage}{0.3\textwidth}\raggedright
+ Grenzwerte von Cauchy-Folgen in $\mathbb{Q}$ hinzufügen
+ \end{minipage}};
+}
+
+\uncover<4->{
+ \node[color=darkred] at (ur) [below left]
+ {\begin{minipage}{0.3\textwidth}\raggedleft
+ Nullstellen von Polynomen in $\mathbb{Q}[X]$ hinzufügen
+ \end{minipage}};
+}
+
+\uncover<2->{
+ \node[color=darkgreen] at (ll) [above right]
+ {\begin{minipage}{0.4\textwidth}\raggedright
+ \begin{block}{Archimedische Eigenschaft}
+ Für $a>b >0$ gibt es $n\in\mathbb{N}$ mit
+ $n\cdot b > a$
+ \end{block}
+ \end{minipage}};
+
+ \node[color=darkgreen] at (ll) [below right]
+ {geordneter Körper, nötig für die Definition von Cauchy-Folgen};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup