aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/6/darstellungen
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-05-07 00:14:48 +0200
committerNao Pross <np@0hm.ch>2021-05-07 00:14:48 +0200
commit20f68f26c0f82496e63b422b65a849a607325ef1 (patch)
tree1403426884f2b1caeabfa36a0e2dd3ddf07c0689 /vorlesungen/slides/6/darstellungen
parentCreate slide to show all point groups (diff)
parentneue folie (diff)
downloadSeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.tar.gz
SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.zip
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/6/darstellungen/charakter.tex108
-rw-r--r--vorlesungen/slides/6/darstellungen/definition.tex59
-rw-r--r--vorlesungen/slides/6/darstellungen/irreduzibel.tex47
-rw-r--r--vorlesungen/slides/6/darstellungen/schur.tex47
-rw-r--r--vorlesungen/slides/6/darstellungen/skalarprodukt.tex42
-rw-r--r--vorlesungen/slides/6/darstellungen/summe.tex89
-rw-r--r--vorlesungen/slides/6/darstellungen/zyklisch.tex84
7 files changed, 476 insertions, 0 deletions
diff --git a/vorlesungen/slides/6/darstellungen/charakter.tex b/vorlesungen/slides/6/darstellungen/charakter.tex
new file mode 100644
index 0000000..ea90b6d
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/charakter.tex
@@ -0,0 +1,108 @@
+%
+% chrakter.tex -- Charakter einer Darstellung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Charakter einer Darstellung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Definition}
+$\varrho\colon G\to\operatorname{GL}_n(\mathbb{C})$ eine Darstellung.
+\\
+Der {\em Charakter} von $\varrho$ ist die Abbildung
+\[
+\chi_{\varrho}
+\colon
+G\to \mathbb{C}^n
+:
+g\mapsto \chi_{\varrho}(g)=\operatorname{Spur}\varrho(g)
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Eigenschaften}
+\begin{enumerate}
+\item
+$\chi_{\varrho}(e) = n$
+\item<6->
+$\chi_{\varrho}(g^{-1}) = \overline{\chi_{\varrho}(g)}$
+\item<15->
+$\chi_{\varrho}(hgh^{-1}) = \chi_{\varrho}(g)$
+\end{enumerate}
+\uncover<21->{%
+Aus 3. folgt, dass Charaktere {\em Klassenfunktionen} sind}
+\end{block}}
+\end{column}
+\begin{column}{0.52\textwidth}
+\uncover<2->{%
+\begin{block}{Begründung}
+\begin{enumerate}
+\item<3->
+$\chi_{\varrho}(e)
+=
+\operatorname{Spur}\varrho(e)
+\uncover<4->{=
+\operatorname{Spur}I_n}
+\uncover<5->{=
+n}
+$
+\item<6->
+$g$ hat endliche Ordnung, d.~h.~$g^k=e$
+\\
+\uncover<7->{%
+$\lambda_i$ in der Jordan-NF erfüllen $\lambda_i^k=1$}
+\\
+$\uncover<8->{\Rightarrow|\lambda_i|=1}
+\uncover<9->{\Rightarrow \lambda_i^{-1} = \overline{\lambda_i}}$
+\begin{align*}
+\uncover<10->{
+\llap{$\chi_{\varrho}(g^{-1})$}
+&=
+\operatorname{Spur}(\varrho(g^{-1}))}
+\uncover<11->{=
+\sum_{i} n_i\overline{\lambda_i}}
+\\[-4pt]
+&\uncover<12->{=
+\overline{
+\sum_{i} n_i\lambda_i
+}}
+\uncover<13->{=
+\operatorname{Spur}\varrho(g)}
+\uncover<14->{=
+\chi_{\varrho}(g)}
+\end{align*}
+\item<16->
+Durch Nachrechnen:
+\begin{align*}
+\chi_{\varrho}(hgh^{-1})
+&\uncover<17->{=
+\operatorname{Spur}
+(
+\varrho(h)
+\varrho(g)
+\varrho(h^{-1})
+)}
+\\
+&\uncover<18->{=
+\operatorname{Spur}
+(
+\varrho(h^{-1})
+\varrho(h)
+\varrho(g)
+)}
+\\
+&\uncover<19->{=
+\operatorname{Spur}\varrho(g)}
+\uncover<20->{=
+\chi_{\varrho}(g)}
+\end{align*}
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/definition.tex b/vorlesungen/slides/6/darstellungen/definition.tex
new file mode 100644
index 0000000..9d93e7f
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/definition.tex
@@ -0,0 +1,59 @@
+%
+% definition.tex -- Definition einer Darstellung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Darstellung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+$G$ eine Gruppe, $V$ ein $\Bbbk$-Vektorraum.
+\\
+\uncover<2->{%
+Ein Homomorphismus
+\[
+\varrho
+\colon
+G\to \operatorname{GL}(V)
+\]
+heisst {\em $n$-dimensionale Darstellung} der Gruppe $G$.}
+\end{block}
+\uncover<3->{%
+\begin{block}{Idee}
+Algebra und Analysis in $\operatorname{GL}_n(\Bbbk)$ nutzen, um
+mehr über $G$ herauszufinden
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Beispiel $S_n$}
+$S_n$ die symmetrische Gruppe,
+$\sigma\mapsto A_{\tilde{f}}$ die
+Abbildung auf die zugehörige Permutationsmatrix
+ist eine $n$-dimensionale Darstellung von $S_n$
+\end{block}}
+\uncover<5->{%
+\begin{block}{Beispiel Matrizengruppe}
+Eine Matrizengruppe $G$ ist eine Teilmenge von $M_n(\Bbbk)$.
+\\
+\uncover<6->{%
+$g\in G \Rightarrow g^{-1}\in G$, daher $G\subset\operatorname{GL}_n(\Bbbk)$}
+\\
+\uncover<7->{%
+Die Einbettung
+\[
+G\to\operatorname{GL}_n(\Bbbk)
+:
+g \mapsto g
+\]
+ist eine Darstellung}\uncover<8->{, die sog.~{\em reguläre Darstellung}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/irreduzibel.tex b/vorlesungen/slides/6/darstellungen/irreduzibel.tex
new file mode 100644
index 0000000..91d8a18
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/irreduzibel.tex
@@ -0,0 +1,47 @@
+%
+% irreduzibel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Irreduzible Darstellungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Darstellung $\varrho\colon G\to\operatorname{GL}(V)$ heisst
+irreduzibel, wenn es keine Zerlegung von $\varrho$ in zwei
+Darstellungen $\varrho_i\colon G\to\operatorname{GL}(U_i)$ ($i=1,2$)
+gibt derart, dass $\varrho = \varrho_1\oplus\varrho_2$
+\end{block}
+\uncover<2->{%
+\begin{block}{Isomorphe Darstellungen}
+$\varrho_i$ sind {\em isomorphe} Darstellungen in $V_i$ wenn es
+$f\colon V_1\overset{\cong}{\to} V_2$ gibt mit
+\begin{align*}
+f \circ \varrho_i(g)\circ f^{-1} &= \varrho_2(g)
+\\
+\uncover<3->{%
+f \circ \varrho_i(g)\phantom{\mathstrut\circ f^{-1}}&= \varrho_2(g)\circ f
+}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Lemma von Schur}
+$\varrho_i$ zwei irreduzible Darstellungen und $f$ so, dass
+$f\circ \varrho_1(g)=\varrho_2(g)\circ f$ für alle $g$.
+Dann gilt
+\begin{enumerate}
+\item<5-> $\varrho_i$ nicht isomorph $\Rightarrow$ $f=0$
+\item<6-> $V_1=V_2,\varrho_1=\varrho_2$ $\Rightarrow$ $f=\lambda I$
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/schur.tex b/vorlesungen/slides/6/darstellungen/schur.tex
new file mode 100644
index 0000000..144de4c
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/schur.tex
@@ -0,0 +1,47 @@
+%
+% schur.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Folgerungen aus Schurs Lemma}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Mittelung einer Abbildung}
+$h\colon V_1\to V_2$
+\[
+h^G = \frac{1}{|G|} \sum_{g\in G} \varrho_2(g)^{-1} \circ h \circ \varrho_1(g)
+\]
+\begin{enumerate}
+\item<2-> $\varrho_i$ nicht isomorph $\Rightarrow$ $h^G=0$
+\item<3-> $V_1=V_2,\varrho_1=\varrho_2$, $h^G = \frac1n\operatorname{Spur}h$
+\end{enumerate}
+\end{block}
+\uncover<4->{%
+\begin{block}{Matrixelemente für $\varrho_i$ nicht isomorph}
+$\varrho_i$ nicht isomorph, dann ist
+\[
+\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl}\varrho_2(g)_{uv}=0
+\]
+für alle $k,l,u,v$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Matrixelemente $V_1=V_2$, $\varrho_i$ iso}
+Für $k=v$ und $l=u$ gilt
+\[
+\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl} \varrho_2(g)_{uv}
+=
+\frac1n
+\]
+und $=0$ sonst
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/skalarprodukt.tex b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex
new file mode 100644
index 0000000..46cc8e9
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex
@@ -0,0 +1,42 @@
+%
+% skalarprodukt.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Skalarprodukt}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition des Skalarproduktes}
+$\varphi$, $\psi$ komplexe Funktionen auf $G$:
+\[
+\langle \varphi,\psi\rangle
+=
+\frac{1}{|G|} \sum_{g\in G} \overline{\varphi(g)} \psi(g)
+\]
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Satz}
+\begin{enumerate}
+\item
+$\chi$ der Charakter einer irrediziblen Darstellung
+$\Rightarrow$ $\langle \chi,\chi\rangle=1$.
+\item<3->
+$\chi$ und $\chi'$ Charaktere nichtisomorpher Darstellungen
+$\Rightarrow$
+$\langle \chi,\chi'\rangle=0$
+\end{enumerate}
+\uncover<4->{%
+D.~h.~Charaktere irreduzibler Darstellungen sind orthonormiert
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/summe.tex b/vorlesungen/slides/6/darstellungen/summe.tex
new file mode 100644
index 0000000..b0d193f
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/summe.tex
@@ -0,0 +1,89 @@
+%
+% Summe.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Direkte Summe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Gegeben}
+Gegeben zwei Darstellungen
+\begin{align*}
+\varrho_1&\colon G \to \mathbb{C}^{n_1}
+\\
+\varrho_2&\colon G \to \mathbb{C}^{n_2}
+\end{align*}
+\end{block}
+\vspace{-12pt}
+\uncover<2->{%
+\begin{block}{Direkte Summe der Darstellungen}
+%\vspace{-12pt}
+\begin{align*}
+\varrho_1\oplus\varrho_2
+&\colon
+G\to \mathbb{C}^{n_1+n_2}
+\only<3|handout:0>{
+= \mathbb{C}^{n_1}\times\mathbb{C}^{n_2}}
+\uncover<4->{=:
+\mathbb{C}^{n_1}\oplus\mathbb{C}^{n_2}}
+\hspace*{5cm}
+\\
+&\colon g\mapsto (\varrho_1(g),\varrho_2(g))
+\end{align*}
+\end{block}}
+\vspace{-12pt}
+\uncover<5->{%
+\begin{block}{Charakter}
+%\vspace{-12pt}
+\begin{align*}
+\chi_{\varrho_1\oplus\varrho_2}(g)
+&=
+\operatorname{Spur}(\varrho_1\oplus\varrho_2)(g)
+\\
+&\uncover<6->{=
+\operatorname{Spur}{\varrho_1(g)}
++
+\operatorname{Spur}{\varrho_1(g)}}
+\\
+&\uncover<7->{=
+\chi_{\varrho_1}(g)
++
+\chi_{\varrho_2}(g)}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Tensorprodukt}
+$n_1\times n_2$-dimensionale
+Darstellung $\varrho_1\otimes\varrho_2$ mit Matrix
+\[
+\begin{pmatrix}
+\varrho_1(g)_{11} \varrho_2(g)
+ &\dots
+ &\varrho_1(g)_{1n_1} \varrho_2(g)\\
+\vdots&\ddots&\vdots\\
+\varrho_1(g)_{n_11} \varrho_2(g)
+ &\dots
+ &\varrho_1(g)_{n_1n_1} \varrho_2(g)
+\end{pmatrix}
+\]
+\uncover<9->{Die ``Einträge'' sind $n_2\times n_2$-Blöcke}
+\end{block}}
+\uncover<10->{%
+\begin{block}{Darstellungsring}
+Die Menge der Darstellungen $R(G)$ einer Gruppe hat
+einer Ringstruktur mit $\oplus$ und $\otimes$
+\\
+\uncover<11->{$\Rightarrow$
+Algebra zum Studium der möglichen Darstellungen von $G$ verwenden}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/zyklisch.tex b/vorlesungen/slides/6/darstellungen/zyklisch.tex
new file mode 100644
index 0000000..312d0e8
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/zyklisch.tex
@@ -0,0 +1,84 @@
+%
+% zyklisch.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiel: Zyklische Gruppen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Gruppe}
+\(
+C_n = \mathbb{Z}/n\mathbb{Z}
+\)
+\end{block}
+\uncover<2->{%
+\begin{block}{Darstellungen von $C_n$}
+Gegeben durch $\varrho_k(1)=e^{2\pi i k/n}$,
+\[
+\varrho_k(l) = e^{2\pi ikl/n}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<3->{
+\begin{block}{Charaktere}
+%\vspace{-10pt}
+\[
+\chi_k(l) = e^{2\pi ikl/n}
+\]
+haben Skalarprodukte
+\[
+\langle \chi_k,\chi_{k'}\rangle
+=
+\begin{cases}
+1&\quad k= k'\\
+0&\quad\text{sonst}
+\end{cases}
+\]
+Die Darstellungen $\chi_k$ sind nicht isomorph
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Orthonormalbasis}
+Die Funktionen $\chi_k$ bilden eine Orthonormalbasis von $L^2(C_n)$
+\end{block}}
+\vspace{-4pt}
+\uncover<6->{%
+\begin{block}{Analyse einer Darstellung}
+$\varrho\colon C_n\to \mathbb{C}^n$ eine Darstellung,
+$\chi_\varrho$ der Charakter lässt zerlegen:
+\begin{align*}
+c_k
+&=
+\langle \chi_k, \chi\rangle = \frac{1}{n} \sum_{l} \chi_k(l) e^{-2\pi ilk/n}
+\\
+\uncover<7->{
+\chi(l)
+&=
+\sum_{k} c_k \chi_k
+=
+\sum_{k} c_k e^{2\pi ikl/n}
+}
+\end{align*}
+\end{block}}
+\vspace{-13pt}
+\uncover<8->{%
+\begin{block}{Fourier-Theorie}
+\vspace{-3pt}
+\begin{center}
+\begin{tabular}{>{$}l<{$}l}
+\uncover<9->{C_n&Diskrete Fourier-Theorie}\\
+\uncover<10->{U(1)&Fourier-Reihen}\\
+\uncover<11->{\mathbb{R}&Fourier-Integral}
+\end{tabular}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup