aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/30-endlichekoerper/galois.tex2
-rw-r--r--buch/chapters/30-endlichekoerper/images/Makefile9
-rw-r--r--buch/chapters/30-endlichekoerper/images/binomial2.pdfbin0 -> 19190 bytes
-rw-r--r--buch/chapters/30-endlichekoerper/images/binomial2.tex289
4 files changed, 299 insertions, 1 deletions
diff --git a/buch/chapters/30-endlichekoerper/galois.tex b/buch/chapters/30-endlichekoerper/galois.tex
index 06941c7..1f51fca 100644
--- a/buch/chapters/30-endlichekoerper/galois.tex
+++ b/buch/chapters/30-endlichekoerper/galois.tex
@@ -411,7 +411,7 @@ Elemente.
\subsubsection{Teilbarkeit von Binomialkoeffizienten}
\begin{figure}
\centering
-%\includegraphics{chapters/30-endlichekoerper/images/binomial2.pdf}
+\includegraphics{chapters/30-endlichekoerper/images/binomial2.pdf}
\caption{Binomialkoeffizienten module $2$ im Pascal-Dreieck.
Auf Zeilen, die zu Exponenten der Form $2^k$ gehören, sind alle
Koeffizienten ausser dem ersten und letzten durch $2$ teilbar.
diff --git a/buch/chapters/30-endlichekoerper/images/Makefile b/buch/chapters/30-endlichekoerper/images/Makefile
new file mode 100644
index 0000000..466bac1
--- /dev/null
+++ b/buch/chapters/30-endlichekoerper/images/Makefile
@@ -0,0 +1,9 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: binomial2.pdf
+
+binomial2.pdf: binomial2.tex
+ pdflatex binomial2.tex
diff --git a/buch/chapters/30-endlichekoerper/images/binomial2.pdf b/buch/chapters/30-endlichekoerper/images/binomial2.pdf
new file mode 100644
index 0000000..f5aee4c
--- /dev/null
+++ b/buch/chapters/30-endlichekoerper/images/binomial2.pdf
Binary files differ
diff --git a/buch/chapters/30-endlichekoerper/images/binomial2.tex b/buch/chapters/30-endlichekoerper/images/binomial2.tex
new file mode 100644
index 0000000..487ac18
--- /dev/null
+++ b/buch/chapters/30-endlichekoerper/images/binomial2.tex
@@ -0,0 +1,289 @@
+%
+% binomial2.tex -- Parität der Binomialkoeffizienten
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\s{0.37}
+\pgfmathparse{\s*sqrt(3)/2}
+\xdef\ys{\pgfmathresult}
+\pgfmathparse{\s/2}
+\xdef\xs{\pgfmathresult}
+
+\def\dreieck#1#2{
+ \fill[color=black] ({\xs*(-#1+2*#2)},{-\ys*#1})
+ -- ({\xs*(-#1+2*#2-1)},{-\ys*(#1+1)})
+ -- ({\xs*(-#1+2*#2+1)},{-\ys*(#1+1)}) -- cycle;
+}
+
+\dreieck{0}{0}
+
+\dreieck{1}{0}
+\dreieck{1}{1}
+
+\dreieck{2}{0}
+\dreieck{2}{2}
+
+\dreieck{3}{0}
+\dreieck{3}{1}
+\dreieck{3}{2}
+\dreieck{3}{3}
+
+\dreieck{4}{0}
+\dreieck{4}{4}
+
+\dreieck{5}{0}
+\dreieck{5}{1}
+\dreieck{5}{4}
+\dreieck{5}{5}
+
+\dreieck{6}{0}
+\dreieck{6}{2}
+\dreieck{6}{4}
+\dreieck{6}{6}
+
+\dreieck{7}{0}
+\dreieck{7}{1}
+\dreieck{7}{2}
+\dreieck{7}{3}
+\dreieck{7}{4}
+\dreieck{7}{5}
+\dreieck{7}{6}
+\dreieck{7}{7}
+
+\dreieck{8}{0}
+\dreieck{8}{8}
+
+\dreieck{9}{0}
+\dreieck{9}{1}
+\dreieck{9}{8}
+\dreieck{9}{9}
+
+\dreieck{10}{0}
+\dreieck{10}{2}
+\dreieck{10}{8}
+\dreieck{10}{10}
+
+\dreieck{11}{0}
+\dreieck{11}{1}
+\dreieck{11}{2}
+\dreieck{11}{3}
+\dreieck{11}{8}
+\dreieck{11}{9}
+\dreieck{11}{10}
+\dreieck{11}{11}
+
+\dreieck{12}{0}
+\dreieck{12}{4}
+\dreieck{12}{8}
+\dreieck{12}{12}
+
+\dreieck{13}{0}
+\dreieck{13}{1}
+\dreieck{13}{4}
+\dreieck{13}{5}
+\dreieck{13}{8}
+\dreieck{13}{9}
+\dreieck{13}{12}
+\dreieck{13}{13}
+
+\dreieck{14}{0}
+\dreieck{14}{2}
+\dreieck{14}{4}
+\dreieck{14}{6}
+\dreieck{14}{8}
+\dreieck{14}{10}
+\dreieck{14}{12}
+\dreieck{14}{14}
+
+\dreieck{15}{0}
+\dreieck{15}{1}
+\dreieck{15}{2}
+\dreieck{15}{3}
+\dreieck{15}{4}
+\dreieck{15}{5}
+\dreieck{15}{6}
+\dreieck{15}{7}
+\dreieck{15}{8}
+\dreieck{15}{9}
+\dreieck{15}{10}
+\dreieck{15}{11}
+\dreieck{15}{12}
+\dreieck{15}{13}
+\dreieck{15}{14}
+\dreieck{15}{15}
+
+\dreieck{16}{0}
+\dreieck{16}{16}
+
+\dreieck{17}{0}
+\dreieck{17}{1}
+\dreieck{17}{16}
+\dreieck{17}{17}
+
+\dreieck{18}{0}
+\dreieck{18}{2}
+\dreieck{18}{16}
+\dreieck{18}{18}
+
+\dreieck{19}{0}
+\dreieck{19}{1}
+\dreieck{19}{2}
+\dreieck{19}{3}
+\dreieck{19}{16}
+\dreieck{19}{17}
+\dreieck{19}{18}
+\dreieck{19}{19}
+
+\dreieck{20}{0}
+\dreieck{20}{4}
+\dreieck{20}{16}
+\dreieck{20}{20}
+
+\dreieck{21}{0}
+\dreieck{21}{1}
+\dreieck{21}{4}
+\dreieck{21}{5}
+\dreieck{21}{16}
+\dreieck{21}{17}
+\dreieck{21}{20}
+\dreieck{21}{21}
+
+\dreieck{22}{0}
+\dreieck{22}{2}
+\dreieck{22}{4}
+\dreieck{22}{6}
+\dreieck{22}{16}
+\dreieck{22}{18}
+\dreieck{22}{20}
+\dreieck{22}{22}
+
+\dreieck{23}{0}
+\dreieck{23}{1}
+\dreieck{23}{2}
+\dreieck{23}{3}
+\dreieck{23}{4}
+\dreieck{23}{5}
+\dreieck{23}{6}
+\dreieck{23}{7}
+\dreieck{23}{16}
+\dreieck{23}{17}
+\dreieck{23}{18}
+\dreieck{23}{19}
+\dreieck{23}{20}
+\dreieck{23}{21}
+\dreieck{23}{22}
+\dreieck{23}{23}
+
+\dreieck{24}{0}
+\dreieck{24}{8}
+\dreieck{24}{16}
+\dreieck{24}{24}
+
+\dreieck{25}{0}
+\dreieck{25}{1}
+\dreieck{25}{8}
+\dreieck{25}{9}
+\dreieck{25}{16}
+\dreieck{25}{17}
+\dreieck{25}{24}
+\dreieck{25}{25}
+
+\dreieck{26}{0}
+\dreieck{26}{2}
+\dreieck{26}{8}
+\dreieck{26}{10}
+\dreieck{26}{16}
+\dreieck{26}{18}
+\dreieck{26}{24}
+\dreieck{26}{26}
+
+\dreieck{27}{0}
+\dreieck{27}{1}
+\dreieck{27}{2}
+\dreieck{27}{3}
+\dreieck{27}{8}
+\dreieck{27}{9}
+\dreieck{27}{10}
+\dreieck{27}{11}
+\dreieck{27}{16}
+\dreieck{27}{17}
+\dreieck{27}{18}
+\dreieck{27}{19}
+\dreieck{27}{24}
+\dreieck{27}{25}
+\dreieck{27}{26}
+\dreieck{27}{27}
+
+\dreieck{28}{0}
+\dreieck{28}{4}
+\dreieck{28}{8}
+\dreieck{28}{12}
+\dreieck{28}{16}
+\dreieck{28}{20}
+\dreieck{28}{24}
+\dreieck{28}{28}
+
+\dreieck{29}{0}
+\dreieck{29}{1}
+\dreieck{29}{4}
+\dreieck{29}{5}
+\dreieck{29}{8}
+\dreieck{29}{9}
+\dreieck{29}{12}
+\dreieck{29}{13}
+\dreieck{29}{16}
+\dreieck{29}{17}
+\dreieck{29}{20}
+\dreieck{29}{21}
+\dreieck{29}{24}
+\dreieck{29}{25}
+\dreieck{29}{28}
+\dreieck{29}{29}
+
+\foreach \k in {0,2,...,30}{
+ \dreieck{30}{\k}
+}
+
+\foreach \k in {0,...,31}{
+ \dreieck{31}{\k}
+}
+
+\dreieck{32}{0}
+\dreieck{32}{32}
+
+\def\etikett#1#2#3{
+ \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) {$#3$};
+}
+
+\etikett{0}{-2}{n=0}
+\etikett{2}{-2}{n=2}
+\etikett{4}{-2}{n=4}
+\etikett{8}{-2}{n=8}
+\etikett{16}{-2}{n=16}
+\etikett{32}{-2}{n=32}
+
+\def\exponent#1#2#3{
+ \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) [rotate=60] {$#3$};
+}
+
+\exponent{-2}{0}{k=0}
+\exponent{0}{2}{k=2}
+\exponent{2}{4}{k=4}
+\exponent{6}{8}{k=8}
+\exponent{14}{16}{k=16}
+\exponent{30}{32}{k=32}
+
+\end{tikzpicture}
+\end{document}
+