diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/ifs/images/Makefile | 9 | ||||
-rw-r--r-- | buch/papers/ifs/images/chaosspiel.tex | 37 | ||||
-rw-r--r-- | buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf | bin | 166218 -> 6074235 bytes | |||
-rw-r--r-- | buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf | bin | 59191 -> 6450743 bytes | |||
-rw-r--r-- | buch/papers/ifs/teil2.tex | 13 | ||||
-rw-r--r-- | buch/papers/ifs/teil3.tex | 2 |
6 files changed, 54 insertions, 7 deletions
diff --git a/buch/papers/ifs/images/Makefile b/buch/papers/ifs/images/Makefile new file mode 100644 index 0000000..c6d3fb5 --- /dev/null +++ b/buch/papers/ifs/images/Makefile @@ -0,0 +1,9 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chaosspiel.pdf: chaosspiel.tex \ + farnnotweight-eps-converted-to.pdf \ + farnrightwight-eps-converted-to.pdf + pdflatex chaosspiel.tex diff --git a/buch/papers/ifs/images/chaosspiel.tex b/buch/papers/ifs/images/chaosspiel.tex new file mode 100644 index 0000000..7c69ad3 --- /dev/null +++ b/buch/papers/ifs/images/chaosspiel.tex @@ -0,0 +1,37 @@ +% +% tikztemplate.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +% add image content here + +\begin{scope}[xshift=-3.6cm] +%\clip (-3.3,-3) rectangle (3.3,3); +\node at (0,0) { +\includegraphics[width=6.8cm]{farnnotweight-eps-converted-to.pdf} +}; +\node at (0.2,-5.7) {(a)}; +\end{scope} + +\begin{scope}[xshift=3.6cm] +%\clip (-3.3,-3) rectangle (3.3,3); +\node at (0,0) { +\includegraphics[width=6.8cm]{farnrightwight-eps-converted-to.pdf} +}; +\node at (0.2,-5.7) {(b)}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf b/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf Binary files differindex 35bff32..f5e4093 100644 --- a/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf +++ b/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf diff --git a/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf b/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf Binary files differindex 3652e8f..fa69d77 100644 --- a/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf +++ b/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf diff --git a/buch/papers/ifs/teil2.tex b/buch/papers/ifs/teil2.tex index c468b73..d0110ed 100644 --- a/buch/papers/ifs/teil2.tex +++ b/buch/papers/ifs/teil2.tex @@ -248,12 +248,13 @@ In jeder Kopie des ganzen Farns fehlen die Punkte für dieses rechte untere Teil \begin{figure} \centering - \subfigure[]{ - \label{ifs:farnNoWeight} - \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnnotweight}} - \subfigure[]{ - \label{ifs:farnrightWeight} - \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnrightwight}} + \includegraphics{papers/ifs/images/chaosspiel.pdf} + %\subfigure[]{ + % \label{ifs:farnNoWeight} + % \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnnotweight}} + %\subfigure[]{ + % \label{ifs:farnrightWeight} + % \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnrightwight}} \caption{(a) Chaosspiel ohne Gewichtung (b) $S_4$ zu wenig gewichtet} \label{ifs:farnweight} \end{figure} diff --git a/buch/papers/ifs/teil3.tex b/buch/papers/ifs/teil3.tex index 01a3ee2..cebb664 100644 --- a/buch/papers/ifs/teil3.tex +++ b/buch/papers/ifs/teil3.tex @@ -137,7 +137,7 @@ Am Ende des Algorithmus haben wir für jeden Range-Block den zugehörigen Domain Mit den gefundenen Abbildungen lässt sich das Bild generieren. Wir beginnen wie schon im letzten Kapitel mit einer beliebigen Startmenge. In unserem Fall ist dieses ein Bild $f_0$ derselben Grösse. -Nun ersetzen wir jedes $R_i$ mit der Transformierten des zugehörigen Domain-Blocks $T(G_j)$. +Nun ersetzen wir jedes $R_i$ mit der Transformierten des zugehörigen Domain-Blocks $T(D_j)$. Dies wird verkürzt als Operator $W$ geschrieben. So erhalten wir ein neues Bild $f_1 = W(f_0)$. Dieses Vorgehen führen wir iteriert aus bis wir von $f_n = W(f_{n-1})$ zu $f_{n-1}$ kaum mehr einen Unterschied feststellen. Die Iteration hat nun ihren Attraktor, das Bild, erreicht. |