diff options
-rw-r--r-- | vorlesungen/slides/4/Makefile.inc | 2 | ||||
-rw-r--r-- | vorlesungen/slides/4/chapter.tex | 2 | ||||
-rw-r--r-- | vorlesungen/slides/4/divisionpoly.tex | 37 | ||||
-rw-r--r-- | vorlesungen/slides/4/polynomefp.tex | 57 | ||||
-rw-r--r-- | vorlesungen/slides/test.tex | 6 |
5 files changed, 101 insertions, 3 deletions
diff --git a/vorlesungen/slides/4/Makefile.inc b/vorlesungen/slides/4/Makefile.inc index 4eae5b0..13de58c 100644 --- a/vorlesungen/slides/4/Makefile.inc +++ b/vorlesungen/slides/4/Makefile.inc @@ -13,5 +13,7 @@ chapter4 = \ ../slides/4/division.tex \ ../slides/4/gauss.tex \ ../slides/4/dh.tex \ + ../slides/4/divisionpoly.tex \ + ../slides/4/polynomefp.tex \ ../slides/4/chapter.tex diff --git a/vorlesungen/slides/4/chapter.tex b/vorlesungen/slides/4/chapter.tex index 38e90eb..84b1f8f 100644 --- a/vorlesungen/slides/4/chapter.tex +++ b/vorlesungen/slides/4/chapter.tex @@ -11,3 +11,5 @@ \folie{4/division.tex} \folie{4/gauss.tex} \folie{4/dh.tex} +\folie{4/divisionpoly.tex} +\folie{4/polynomefp.tex} diff --git a/vorlesungen/slides/4/divisionpoly.tex b/vorlesungen/slides/4/divisionpoly.tex new file mode 100644 index 0000000..5e71c95 --- /dev/null +++ b/vorlesungen/slides/4/divisionpoly.tex @@ -0,0 +1,37 @@ +% +% divisionpoly.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Polynomdivision in $\mathbb{F}_3[X]$} +Rechenregeln in $\mathbb{F}_3$: $1+2=0$, $2\cdot 2 = 1$ +\[ +\arraycolsep=1.4pt +\begin{array}{rcrcrcrcrcrcrcrcrcrc} +\llap{$ ($}X^4&+&X^3&+& X^2&+& X&+&1\rlap{$)$}&\;\;:&(X^2&+&X&+&2)&=&\uncover<2->{X^2}&\uncover<5->{+&2=q}\\ +\uncover<3->{\llap{$-($}X^4&+&X^3&+&2X^2\rlap{$)$}}& & & & & & & & & & & & & & & \\ +\uncover<4->{ & & & &2X^2&+& X&+& 1} & & & & & & & & & & \\ +\uncover<6->{ & & & &\llap{$-($}2X^2&+&2X&+& 2\rlap{$)$}}& & & & & & & & & & \\ +\uncover<7->{ & & & & & &2X&+&2\rlap{$\mathstrut=r$}& & & & & & & & & &} +\end{array} +\] +\uncover<8->{% +Kontrolle: +\[ +\arraycolsep=1.4pt +\begin{array}{rclcrcr} +(\underbrace{X^2+2}_{\displaystyle=q}) +(X^2+X+2) + &=&\rlap{$\uncover<9->{X^4+X^3+2X^2}\uncover<10->{ + 2X^2+2X+2}$} +\\ +\uncover<11->{&=& X^4+X^3+X^2&+&2X&+&2} +\\ +\uncover<12->{& & &&\llap{$r=\mathstrut$}2X&+&2} +\\ +\uncover<13->{&=& X^4+X^3+X^2&+&1X&+&1} +\end{array} +\] +} + +\end{frame} diff --git a/vorlesungen/slides/4/polynomefp.tex b/vorlesungen/slides/4/polynomefp.tex new file mode 100644 index 0000000..fe514dd --- /dev/null +++ b/vorlesungen/slides/4/polynomefp.tex @@ -0,0 +1,57 @@ +% +% polynomefp.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Polynome über $\mathbb{F}_p[X]$} +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Polynomring} +$\mathbb{F}_p[X]$ sind Polynome +\[ +p(X) += +a_0+a_1X+\dots+a_nX^n +\] +mit $a_i\in\mathbb{F}_p$. +ObdA: $a_n=1$ + +\end{block} +\begin{block}{Irreduzible Polynome} +$m(X)$ ist irreduzibel, wenn es keine Faktorisierung +$m(X)=p(X)q(X)$ mit $p,q\in\mathbb{F}_p[X]$ gibt +\end{block} +\begin{block}{Rest modulo $m(X)$} +$X^{n+k}$ kann immer reduziert werden: +\[ +X^{n+k} = -(a_0+a_1X+\dots+a_{n-1}X^{n-1})X^k +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Körper $\mathbb{F}_p/(m(X))$} +Wenn $m(X)$ irreduzibel ist, dann ist +$\mathbb{F}_p[X]$ nullteilerfrei. +\medskip + +$a\in \mathbb{F}_p[X]$ mit $\deg a < \deg m$, dann ist +\begin{enumerate} +\item +$\operatorname{ggT}(a,m) = 1$ +\item +Es gibt $s,t\in\mathbb{F}_p[X]$ mit +\[ +s(X)m(X)+t(X)a(X) = 1 +\] +(aus dem euklidischen Algorithmus) +\item +$a^{-1} = t(X)$ +\end{enumerate} +\end{block} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex index 9d1f6ef..2df5421 100644 --- a/vorlesungen/slides/test.tex +++ b/vorlesungen/slides/test.tex @@ -31,13 +31,13 @@ %\folie{4/fp.tex} %\folie{4/division.tex} %\folie{4/gauss.tex} -\folie{4/dh.tex} -% XXX ? \folie{4/polynomefp.tex} +% \folie{4/dh.tex} % XXX \folie{4/frobenius.tex} +\folie{4/divisionpoly.tex} % XXX \folie{4/ggtpoly.tex} -% XXX \folie{4/divisionpoly.tex} % XXX \folie{4/euklidpoly.tex} +%\folie{4/polynomefp.tex} % XXX \folie{4/f2.tex} % XXX \folie{4/schieberegister.tex} |