diff options
-rw-r--r-- | buch/chapters/70-graphen/Makefile.inc | 1 | ||||
-rw-r--r-- | buch/chapters/70-graphen/chapter.tex | 1 | ||||
-rw-r--r-- | buch/chapters/70-graphen/images/Makefile | 5 | ||||
-rw-r--r-- | buch/chapters/70-graphen/images/petersonchrind.pdf | bin | 0 -> 15217 bytes | |||
-rw-r--r-- | buch/chapters/70-graphen/images/petersonchrind.tex | 142 | ||||
-rw-r--r-- | buch/chapters/70-graphen/spektral.tex | 269 | ||||
-rw-r--r-- | buch/chapters/70-graphen/waerme.tex | 184 | ||||
-rw-r--r-- | vorlesungen/stream/countdown.html | 2 |
8 files changed, 435 insertions, 169 deletions
diff --git a/buch/chapters/70-graphen/Makefile.inc b/buch/chapters/70-graphen/Makefile.inc index d8fe742..2a7d9a6 100644 --- a/buch/chapters/70-graphen/Makefile.inc +++ b/buch/chapters/70-graphen/Makefile.inc @@ -7,5 +7,6 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/70-graphen/beschreibung.tex \ chapters/70-graphen/spektral.tex \ + chapters/70-graphen/waerme.tex \ chapters/70-graphen/wavelets.tex \ chapters/70-graphen/chapter.tex diff --git a/buch/chapters/70-graphen/chapter.tex b/buch/chapters/70-graphen/chapter.tex index b6e02c9..6def393 100644 --- a/buch/chapters/70-graphen/chapter.tex +++ b/buch/chapters/70-graphen/chapter.tex @@ -65,5 +65,6 @@ Basis zur Beschreibung von Funktionen auf dem Graphen. \input{chapters/70-graphen/beschreibung.tex} \input{chapters/70-graphen/spektral.tex} +\input{chapters/70-graphen/waerme.tex} \input{chapters/70-graphen/wavelets.tex} diff --git a/buch/chapters/70-graphen/images/Makefile b/buch/chapters/70-graphen/images/Makefile index bd77756..8f98134 100644 --- a/buch/chapters/70-graphen/images/Makefile +++ b/buch/chapters/70-graphen/images/Makefile @@ -3,11 +3,14 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf fundamental.pdf +all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf fundamental.pdf \ + petersonchrind.pdf peterson.pdf: peterson.tex pdflatex peterson.tex +petersonchrind.pdf: petersonchrind.tex + pdflatex petersonchrind.tex adjazenzu.pdf: adjazenzu.tex pdflatex adjazenzu.tex diff --git a/buch/chapters/70-graphen/images/petersonchrind.pdf b/buch/chapters/70-graphen/images/petersonchrind.pdf Binary files differnew file mode 100644 index 0000000..23ef6e9 --- /dev/null +++ b/buch/chapters/70-graphen/images/petersonchrind.pdf diff --git a/buch/chapters/70-graphen/images/petersonchrind.tex b/buch/chapters/70-graphen/images/petersonchrind.tex new file mode 100644 index 0000000..4ae9f39 --- /dev/null +++ b/buch/chapters/70-graphen/images/petersonchrind.tex @@ -0,0 +1,142 @@ +% +% tikztemplate.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\Ra{2} +\def\Ri{1} +\def\e{1.0} +\def\r{0.2} + +\begin{scope}[xshift=-3.5cm] + +\definecolor{rot}{rgb}{0.8,0,0.8} +\definecolor{gruen}{rgb}{0.2,0.6,0.2} +\definecolor{blau}{rgb}{1,0.6,0.2} + +\coordinate (PA) at ({\Ri*sin(0*72)},{\e*\Ri*cos(0*72)}); +\coordinate (PB) at ({\Ri*sin(1*72)},{\e*\Ri*cos(1*72)}); +\coordinate (PC) at ({\Ri*sin(2*72)},{\e*\Ri*cos(2*72)}); +\coordinate (PD) at ({\Ri*sin(3*72)},{\e*\Ri*cos(3*72)}); +\coordinate (PE) at ({\Ri*sin(4*72)},{\e*\Ri*cos(4*72)}); + +\coordinate (QA) at ({\Ra*sin(0*72)},{\e*\Ra*cos(0*72)}); +\coordinate (QB) at ({\Ra*sin(1*72)},{\e*\Ra*cos(1*72)}); +\coordinate (QC) at ({\Ra*sin(2*72)},{\e*\Ra*cos(2*72)}); +\coordinate (QD) at ({\Ra*sin(3*72)},{\e*\Ra*cos(3*72)}); +\coordinate (QE) at ({\Ra*sin(4*72)},{\e*\Ra*cos(4*72)}); + +\draw (PA)--(PC)--(PE)--(PB)--(PD)--cycle; +\draw (QA)--(QB)--(QC)--(QD)--(QE)--cycle; +\draw (PA)--(QA); +\draw (PB)--(QB); +\draw (PC)--(QC); +\draw (PD)--(QD); +\draw (PE)--(QE); + +\fill[color=blau] (PA) circle[radius=\r]; +\fill[color=rot] (PB) circle[radius=\r]; +\fill[color=rot] (PC) circle[radius=\r]; +\fill[color=gruen] (PD) circle[radius=\r]; +\fill[color=gruen] (PE) circle[radius=\r]; + +\fill[color=rot] (QA) circle[radius=\r]; +\fill[color=blau] (QB) circle[radius=\r]; +\fill[color=gruen] (QC) circle[radius=\r]; +\fill[color=rot] (QD) circle[radius=\r]; +\fill[color=blau] (QE) circle[radius=\r]; + +\draw (PA) circle[radius=\r]; +\draw (PB) circle[radius=\r]; +\draw (PC) circle[radius=\r]; +\draw (PD) circle[radius=\r]; +\draw (PE) circle[radius=\r]; + +\draw (QA) circle[radius=\r]; +\draw (QB) circle[radius=\r]; +\draw (QC) circle[radius=\r]; +\draw (QD) circle[radius=\r]; +\draw (QE) circle[radius=\r]; + +\node at (0,{-\Ra}) [below] {$\operatorname{chr}P=3\mathstrut$}; + +\end{scope} + +\begin{scope}[xshift=3.5cm] +\definecolor{rot}{rgb}{0.8,0,0.8} +\definecolor{gruen}{rgb}{0.2,0.6,0.2} +\definecolor{blau}{rgb}{1,0.6,0.2} +\definecolor{gelb}{rgb}{0,0,1} + +\coordinate (PA) at ({\Ri*sin(0*72)},{\e*\Ri*cos(0*72)}); +\coordinate (PB) at ({\Ri*sin(1*72)},{\e*\Ri*cos(1*72)}); +\coordinate (PC) at ({\Ri*sin(2*72)},{\e*\Ri*cos(2*72)}); +\coordinate (PD) at ({\Ri*sin(3*72)},{\e*\Ri*cos(3*72)}); +\coordinate (PE) at ({\Ri*sin(4*72)},{\e*\Ri*cos(4*72)}); + +\coordinate (QA) at ({\Ra*sin(0*72)},{\e*\Ra*cos(0*72)}); +\coordinate (QB) at ({\Ra*sin(1*72)},{\e*\Ra*cos(1*72)}); +\coordinate (QC) at ({\Ra*sin(2*72)},{\e*\Ra*cos(2*72)}); +\coordinate (QD) at ({\Ra*sin(3*72)},{\e*\Ra*cos(3*72)}); +\coordinate (QE) at ({\Ra*sin(4*72)},{\e*\Ra*cos(4*72)}); + +\draw (PA)--(PC)--(PE)--(PB)--(PD)--cycle; +\draw (QA)--(QB)--(QC)--(QD)--(QE)--cycle; +\draw (PA)--(QA); +\draw (PB)--(QB); +\draw (PC)--(QC); +\draw (PD)--(QD); +\draw (PE)--(QE); + +\fill[color=rot] (QA) circle[radius={1.5*\r}]; +\fill[color=rot!40] (QB) circle[radius=\r]; +\fill[color=rot!40] (QE) circle[radius=\r]; +\fill[color=rot!40] (PA) circle[radius=\r]; + +\fill[color=blau] (PB) circle[radius={1.5*\r}]; +\fill[color=blau!40] (PD) circle[radius=\r]; +\fill[color=blau!40] (PE) circle[radius=\r]; +\fill[color=blau!80,opacity=0.5] (QB) circle[radius=\r]; + +\fill[color=gruen] (PC) circle[radius={1.5*\r}]; +\fill[color=gruen!40] (QC) circle[radius=\r]; +\fill[color=gruen!80,opacity=0.5] (PA) circle[radius=\r]; +\fill[color=gruen!80,opacity=0.5] (PE) circle[radius=\r]; + +\fill[color=gelb] (QD) circle[radius={1.5*\r}]; +\fill[color=gelb!80,opacity=0.5] (QC) circle[radius=\r]; +\fill[color=gelb!80,opacity=0.5] (QE) circle[radius=\r]; +\fill[color=gelb!80,opacity=0.5] (PD) circle[radius=\r]; + +\draw (PA) circle[radius=\r]; +\draw (PB) circle[radius={1.5*\r}]; +\draw (PC) circle[radius={1.5*\r}]; +\draw (PD) circle[radius=\r]; +\draw (PE) circle[radius=\r]; + +\draw (QA) circle[radius={1.5*\r}]; +\draw (QB) circle[radius=\r]; +\draw (QC) circle[radius=\r]; +\draw (QD) circle[radius={1.5*\r}]; +\draw (QE) circle[radius=\r]; + +\node at (0,{-\Ra}) [below] {$\operatorname{ind}P=4\mathstrut$}; + +\end{scope} + + + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/70-graphen/spektral.tex b/buch/chapters/70-graphen/spektral.tex index f68c814..bc5c425 100644 --- a/buch/chapters/70-graphen/spektral.tex +++ b/buch/chapters/70-graphen/spektral.tex @@ -1,198 +1,133 @@ % -% spektral.tex +% spektral.tex -- spektrale Graphentheorie % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Spektrale Graphentheorie \label{buch:section:spektrale-graphentheorie}} \rhead{Spektrale Graphentheorie} -Die Laplace-Matrix codiert alle wesentliche Information eines +Die Adjazenz-Matrix, die Grad-Matrix und damit natürlich auch +die Laplace-Matrix codieren alle wesentliche Information eines ungerichteten Graphen. Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine Komponente haben. Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen -Eigenschaften der Laplace-Matrix zu studieren. +Eigenschaften dieser Matrizen zu studieren. +Dieser Abschnitt soll diese Idee an dem ziemlich übersichtlichen Beispiel +der chromatischen Zahl eines Graphen illustrieren. -\subsection{Grapheigenschaften und Spektrum von $L$ -\label{buch:subsection:grapheigenschaften-und-spektrum-von-l}} -TODO XXX +\subsection{Chromatische Zahl und Unabhängigkeitszahl +\label{buch:subsection:chromatische-zahl}} +Der Grad eines Knotens ist ein mass dafür, wie stark ein Graph +``vernetzt'' ist. +Je höher der Grad, desto mehr direkte Verbindungen zwischen Knoten gibt es. +Noch etwas präziser können diese Idee die beiden mit Hilfe der +chromatischen zahl und der Unabhängigkeitszahl erfasst werden. -\subsection{Wärmeleitung auf einem Graphen -\label{buch:subsection:waermeleitung-auf-einem-graphen}} -Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet -werden als Funktionen, die jedem Knoten einen Wert zuordnen. -Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung -auf dem Graphen. -Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten -zu einem anderen zu fliessen. -Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto -grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur -der beteiligten Knoten. -Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional -\[ -\frac{dT_i}{dt} -= -\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i) -= -- -\kappa -\biggl( -d_iT_i -- -\sum_{\text{$j$ Nachbar von $i$}} T_j -\biggr) -\] -Der Term auf der rechten Seite ist genau die Wirkung der -Laplace-Matrix auf dem Vektor $T$ der Temperaturen: -\begin{equation} -\frac{dT}{dt} -= --\kappa L T. -\label{buch:graphen:eqn:waermeleitung} -\end{equation} -Der Wärmefluss, der durch die -Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben -wird, codiert ebenfalls wesentliche Informationen über den Graphen. -Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt, -desto schneller findet der Wärmeaustausch zwischen diesen Teilen -statt. -Die Lösungen der Wärmeleitungsgleichung liefern also Informationen -über den Graphen. +\begin{definition} +Die {\em chromatische Zahl} $\operatorname{chr}G$ eines Graphen $G$ ist +die minimale Anzahl von Farben, die Einfärben der Knoten eines Graphen +nötig sind, sodass benachbarte Knoten verschiedene Farben haben. +\index{chromatische Zahl} +\end{definition} -\subsection{Eigenwerte und Eigenvektoren -\label{buch:subsection:ein-zyklischer-graph}} -Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} -ist eine lineare Differentialgleichung mit konstanten Koeffizienten, -die mit der Matrixexponentialfunktion gelöst werden. -Die Lösung ist -\[ -f(t) = e^{-\kappa Lt}f(0). -\] +\begin{definition} +Eine Menge von Knoten eines Graphen heisst {\em unabhängig}, wenn +keine zwei Knoten im Graphen verbunden sind. +Die {\em Unabhängigkeitszahl} $\operatorname{ind}G$ eines Graphen $G$ +ist die maximale Anzahl Knoten einer unabhängigen Menge. +\index{Unabhängigkeitszahl} +\end{definition} -Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich -ineffizient, da grosse Matrizenprodukte berechnet werden müssen. -Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus -orthonormierten Eigenvektoren und die Eigenwerte sind reell. -Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die -zugehörigen Eigenwerte mit $\lambda_i$. -Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung -der Wärmeleitungsgleichung, denn die beiden Seiten +Zwischen der chromatischen Zahl und der Unabhängigkeitszahl eines Graphen +muss es einen Zusammenhang geben. +Je mehr Verbingungen es im Graphen gibt, desto grösser wird die chromatische +Zahl. +Gleichzeitig wird es schwieriger für Mengen von Knoten, unabhängig zu sein. + +\begin{satz} +\label{buch:satz:chrind} +Ist $G$ ein Graph mit $n$ Knoten, dann gilt +$\operatorname{chr}G\cdot\operatorname{ind}G\ge n$. +\end{satz} + +\begin{proof}[Beweis] +Eine minimale Färbung des Graphen mit $\operatorname{chr}G$ Farben +teilt die Knoten in $\operatorname{chr}G$ Mengen $V_f$ von Knoten mit +gleicher Farbe $f$ ein. +Da diese Mengen einfarbig sind, sind sie unabhängig, enthalten also +höchstens so viele Knoten, wie die Unabhängigkeitszahl erlaubt. +Die Gesamtzahl der Knoten ist also \begin{align*} -\frac{d}{dt}f_i(t) +V +&= +\bigcup_{\text{$f$ eine Farbe}} V_f +&&\Rightarrow& +n &= --\kappa\lambda_ie^{-\kappa\lambda_it}f_i +\sum_{\text{$f$ eine Farbe}} |V_f| +\le +\sum_{\text{$f$ eine Farbe}} \operatorname{ind}G = --\kappa\lambda_i f_i(t) +(\text{Anzahl Farben})\cdot \operatorname{ind}G \\ --\kappa Lf_i(t) +& +&&& &= --\kappa e^{-\kappa\lambda_it} Lf_i -= --\kappa e^{-\kappa\lambda_it} \lambda_i f_i -= --\kappa \lambda_i f_i(t) +\operatorname{chr}G \cdot \operatorname{ind}G \end{align*} -von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein. +Damit ist $n\le \operatorname{chr}G\cdot\operatorname{ind}G$ gezeigt. +\qedhere +\end{proof} -Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen -Anfangstemperaturverteilung $f$ kann durch Linearkombination aus -den Lösungen $f_i(t)$ zusammengesetzt werden. -Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren. -Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach, -die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren: -\[ -f=\sum_{i=1}^n \langle f_i,f\rangle f_i. -\] -Daraus kann man die allgmeine Lösungsformel -\begin{equation} -f(t) -= -\sum_{i=1}^n \langle f_i,f\rangle f_i(t) -= -\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i -\label{buch:graphen:eqn:eigloesung} -\end{equation} -ableiten. +\begin{beispiel} +In einem vollständigen Graphen ist jeder Knoten mit jedem anderen verbunden. +Jede Menge mit zwei oder mehr Knoten kann daher nicht unabhängig sein, die +Unabhängigkeitszahl ist daher $\operatorname{ind}G=1$. +Andererseits ist für jeden Knoten eine eigene Farbe nötig, daher ist die +chromatische Zahl $\operatorname{chr}G=n$. +Die Ungleichung von Satz~\ref{buch:satz:chrind} ist erfüllt, sogar mit +Gleichheit. +Das Beispiel zeigt, dass die Ungleichung nicht ohne zusätzliche Annahmen +verbessert werden kann. +\end{beispiel} -\subsection{Beispiel: Ein zyklischer Graph} \begin{figure} \centering -\includegraphics{chapters/70-graphen/images/kreis.pdf} -\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem -Graphen. -\label{buch:graphen:fig:kreis}} +\includegraphics{chapters/70-graphen/images/petersonchrind.pdf} +\caption{Chromatische Zahl und Unabhängigkeitszahl des Peterson-Graphen. +Die chromatische Zahl ist $3$, da der Graph sich mit drei Farben einfärben +lässt (links). +Die Unabhängigkeitszahl ist $4$, die vier grösseren Knoten im rechten +Graphen sind unabhängig. +Die Farben der kleinen Knoten sind die additive Mischung der Farben +der grossen Knoten, mit denen sie verbunden sind. +\label{buch:graphen:fig:chrindpeterson}} \end{figure} -Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen -von Abbildung~\ref{buch:graphen:fig:kreis}. -Besonders interessant sind die folgenden Funktionen: -\[ -\left. -\begin{aligned} -s_m(k) -&= -\sin\frac{2\pi mk}{n} -\\ -c_m(k) -&= -\cos\frac{2\pi mk}{n} -\end{aligned} -\; -\right\} -\quad -\Rightarrow -\quad -e_m(k) -= -e^{2\pi imk/n} -= -c_m(k) + is_m(k). -\] -Das Skalarprodukt dieser Funktionen ist -\[ -\langle e_m, e_{m'}\rangle -= -\frac1n -\sum_{k=1}^n -\overline{e^{2\pi i km/n}} -e^{2\pi ikm'/n} -= -\frac1n -\sum_{k=1}^n -e^{\frac{2\pi i}{n}(m'-m)k} -= -\delta_{mm'} -\] -Die Funktionen bilden daher eine Orthonormalbasis des Raums der -Funktionen auf $G$. -Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$ -die Funktionen -\[ -c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2} -\] -eine orthonormierte Basis. +\begin{beispiel} +Der Peterson-Graph $P$ von Abbildung~\ref{buch:graphen:fig:chrindpeterson} +hat chromatische Zahl $\operatorname{chr}P=3$ und unabhängigkeitszahl +$\operatorname{ind}P=4$. +Die Ungleichung von Satz~\ref{buch:satz:chrind} ist erfüllt, sogar als +Ungleichung: $\operatorname{chr}P\cdot\operatorname{ind}P=3\cdot 4=12>10=n$. +\end{beispiel} -Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen -Abbildung auf Funktionen auf dem Graphen gemacht werden. -Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit -Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist. -Dann definieren wir die Funktion $Lf$ durch -\[ -(Lf)(v) -= -\sum_{v'\in V} l_{vv'}f(v'). -\] +Nach Definition ist Unabhängigkeitszahl ein Mass für die Grösse einer +unabhängigen Menge von Punkten. +Der Beweis von Satz~\ref{buch:satz:chrind} zeigt, dass man sich die +chromatische Zahl als ein Mass dafür, wieviele solche anabhängige +Mengen in einem Grapehn untergebracht werden können. + +\subsection{Chromatische Zahl und maximaler Grad +\label{buch:subsection:chr-und-maximaler-grad}} + +\subsection{Maximaler Eigenwert von $A(G)$ maximaler Grad +\label{buch:subsection:maximaler-eigenwert}} -\subsection{Standardbasis und Eigenbasis -\label{buch:subsection:standardbasis-und-eigenbasis}} -Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear -kombinieren lassen, ist die Standardbasis. -Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten -\[ -e_v\colon V\to\mathbb R:v'\mapsto \begin{cases} -1\qquad&v=v'\\ -0\qquad&\text{sonst.} -\end{cases} -\] +\subsection{$\alpha_{\text{max}}$ eines Untegraphen +\label{buch:subsection:alphamax-eines-untergraphen}} +\subsection{Chromatische Zahl und $\alpha_{\text{max}}$ +\label{buch:subsection:chr-und-alpha-max}} diff --git a/buch/chapters/70-graphen/waerme.tex b/buch/chapters/70-graphen/waerme.tex new file mode 100644 index 0000000..e7fc023 --- /dev/null +++ b/buch/chapters/70-graphen/waerme.tex @@ -0,0 +1,184 @@ +% +% waerme.tex +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Wärmeleitung auf einem Graphen +\label{buch:section:waermeleitung-auf-einem-graphen}} +Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet +werden als Funktionen, die jedem Knoten einen Wert zuordnen. +Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung +auf dem Graphen. +Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten +zu einem anderen zu fliessen. +Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto +grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur +der beteiligten Knoten. +Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional +\[ +\frac{dT_i}{dt} += +\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i) += +- +\kappa +\biggl( +d_iT_i +- +\sum_{\text{$j$ Nachbar von $i$}} T_j +\biggr) +\] +Der Term auf der rechten Seite ist genau die Wirkung der +Laplace-Matrix auf dem Vektor $T$ der Temperaturen: +\begin{equation} +\frac{dT}{dt} += +-\kappa L T. +\label{buch:graphen:eqn:waermeleitung} +\end{equation} +Der Wärmefluss, der durch die +Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben +wird, codiert ebenfalls wesentliche Informationen über den Graphen. +Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt, +desto schneller findet der Wärmeaustausch zwischen diesen Teilen +statt. +Die Lösungen der Wärmeleitungsgleichung liefern also Informationen +über den Graphen. + +\subsection{Eigenwerte und Eigenvektoren +\label{buch:subsection:ein-zyklischer-graph}} +Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} +ist eine lineare Differentialgleichung mit konstanten Koeffizienten, +die mit der Matrixexponentialfunktion gelöst werden. +Die Lösung ist +\[ +f(t) = e^{-\kappa Lt}f(0). +\] + +Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich +ineffizient, da grosse Matrizenprodukte berechnet werden müssen. +Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus +orthonormierten Eigenvektoren und die Eigenwerte sind reell. +Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die +zugehörigen Eigenwerte mit $\lambda_i$. +Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung +der Wärmeleitungsgleichung, denn die beiden Seiten +\begin{align*} +\frac{d}{dt}f_i(t) +&= +-\kappa\lambda_ie^{-\kappa\lambda_it}f_i += +-\kappa\lambda_i f_i(t) +\\ +-\kappa Lf_i(t) +&= +-\kappa e^{-\kappa\lambda_it} Lf_i += +-\kappa e^{-\kappa\lambda_it} \lambda_i f_i += +-\kappa \lambda_i f_i(t) +\end{align*} +von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein. + +Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen +Anfangstemperaturverteilung $f$ kann durch Linearkombination aus +den Lösungen $f_i(t)$ zusammengesetzt werden. +Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren. +Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach, +die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren: +\[ +f=\sum_{i=1}^n \langle f_i,f\rangle f_i. +\] +Daraus kann man die allgmeine Lösungsformel +\begin{equation} +f(t) += +\sum_{i=1}^n \langle f_i,f\rangle f_i(t) += +\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i +\label{buch:graphen:eqn:eigloesung} +\end{equation} +ableiten. + +\subsection{Beispiel: Ein zyklischer Graph} +\begin{figure} +\centering +\includegraphics{chapters/70-graphen/images/kreis.pdf} +\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem +Graphen. +\label{buch:graphen:fig:kreis}} +\end{figure} +Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen +von Abbildung~\ref{buch:graphen:fig:kreis}. +Besonders interessant sind die folgenden Funktionen: +\[ +\left. +\begin{aligned} +s_m(k) +&= +\sin\frac{2\pi mk}{n} +\\ +c_m(k) +&= +\cos\frac{2\pi mk}{n} +\end{aligned} +\; +\right\} +\quad +\Rightarrow +\quad +e_m(k) += +e^{2\pi imk/n} += +c_m(k) + is_m(k). +\] +Das Skalarprodukt dieser Funktionen ist +\[ +\langle e_m, e_{m'}\rangle += +\frac1n +\sum_{k=1}^n +\overline{e^{2\pi i km/n}} +e^{2\pi ikm'/n} += +\frac1n +\sum_{k=1}^n +e^{\frac{2\pi i}{n}(m'-m)k} += +\delta_{mm'} +\] +Die Funktionen bilden daher eine Orthonormalbasis des Raums der +Funktionen auf $G$. +Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$ +die Funktionen +\[ +c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2} +\] +eine orthonormierte Basis. + + +Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen +Abbildung auf Funktionen auf dem Graphen gemacht werden. +Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit +Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist. +Dann definieren wir die Funktion $Lf$ durch +\[ +(Lf)(v) += +\sum_{v'\in V} l_{vv'}f(v'). +\] + +\subsection{Standardbasis und Eigenbasis +\label{buch:subsection:standardbasis-und-eigenbasis}} +Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear +kombinieren lassen, ist die Standardbasis. +Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten +\[ +e_v\colon V\to\mathbb R:v'\mapsto \begin{cases} +1\qquad&v=v'\\ +0\qquad&\text{sonst.} +\end{cases} +\] + + diff --git a/vorlesungen/stream/countdown.html b/vorlesungen/stream/countdown.html index 940e269..12f99ac 100644 --- a/vorlesungen/stream/countdown.html +++ b/vorlesungen/stream/countdown.html @@ -17,7 +17,7 @@ color: #990000; <body> <div id="demo"></div> <script> -var deadline = new Date("Mar 29, 2021 17:00:00").getTime(); +var deadline = new Date("May 17, 2021 17:00:00").getTime(); var x = setInterval(function() { var now = new Date().getTime(); var t = deadline - now; |