aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/05-zahlen/ganz.tex2
-rw-r--r--buch/chapters/05-zahlen/natuerlich.tex2
2 files changed, 2 insertions, 2 deletions
diff --git a/buch/chapters/05-zahlen/ganz.tex b/buch/chapters/05-zahlen/ganz.tex
index d86e225..7e0ec8c 100644
--- a/buch/chapters/05-zahlen/ganz.tex
+++ b/buch/chapters/05-zahlen/ganz.tex
@@ -67,7 +67,7 @@ Zahlen mit der Eigenschaft
a+b' = a'+b.
\]
Man nennt eine solche Menge eine {\em Äquivalenzklasse} der Relation $\sim$.
-\index{Äquivalenzklasse}
+\index{Aquivalenzklasse@Äquivalenzklasse}
Die Menge $\mathbb{Z}$ der {\em ganzen Zahlen} ist die Menge aller solchen
\index{ganze Zahlen}%
Äquivalenzklassen.
diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex
index 53e7295..8c51346 100644
--- a/buch/chapters/05-zahlen/natuerlich.tex
+++ b/buch/chapters/05-zahlen/natuerlich.tex
@@ -282,7 +282,7 @@ Der Vorteil dieser Definition ist, dass sie die früher definierten
natürlichen Zahlen nicht braucht, diese werden jetzt erst konstruiert.
Dazu fassen wir in der Menge aller endlichen Mengen die gleich mächtigen
Mengen zusammen, bilden also die Äquivalenzklassen der Relation $\sim$.
-\index{Äquivalenzklasse}%
+\index{Aquivalenzklasse@Äquivalenzklasse}%
Der Vorteil dieser Sichtweise ist, dass die natürlichen Zahlen ganz
explizit als die Anzahlen von Elementen einer endlichen Menge entstehen.