diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/linear.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex index cdd1693..2fcf199 100644 --- a/buch/chapters/10-vektorenmatrizen/linear.tex +++ b/buch/chapters/10-vektorenmatrizen/linear.tex @@ -256,7 +256,7 @@ aufgespannte Raum. Die Gleichung~\eqref{buch:vektoren-und-matrizen:eqn:vektorform} drückt aus, dass sich der Vektor $b$ auf der rechten Seite als Linearkombination der Spaltenvektoren ausdrücken lässt. -Oft ist eine solche Darstellung auf nur eine Art und Weise. +Oft ist eine solche Darstellung auf nur eine Art und Weise möglich. Betrachten wir daher jetzt den Fall, dass es zwei verschiedene Linearkombinationen der Vektoren $a_1,\dots,a_n$ gibt, die beide den Vektor $b$ ergeben. @@ -1084,7 +1084,7 @@ Das Bild einer $m\times n$-Matrix $A$ ist die Menge \] \end{definition} -Zwei Vektoren $a,b\in\operatorname{im}$ haben Urbilder $u,w\in V$ mit +Zwei Vektoren $a,b\in\operatorname{im} f$ haben Urbilder $u,w\in V$ mit $f(u)=a$ und $f(w)=b$. Für Summe und Multiplikation mit Skalaren folgt \[ |