diff options
Diffstat (limited to '')
19 files changed, 3648 insertions, 11 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/Makefile.inc b/buch/chapters/10-vektorenmatrizen/Makefile.inc index 69468f6..f211854 100644 --- a/buch/chapters/10-vektorenmatrizen/Makefile.inc +++ b/buch/chapters/10-vektorenmatrizen/Makefile.inc @@ -6,9 +6,13 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/10-matrizenvektoren/linear.tex \ + chapters/10-matrizenvektoren/strukturen.tex \ chapters/10-matrizenvektoren/gruppen.tex \ chapters/10-matrizenvektoren/ringe.tex \ chapters/10-matrizenvektoren/algebren.tex \ + chapters/10-matrizenvektoren/koerper.tex \ + chapters/10-matrizenvektoren/skalarprodukt.tex \ + chapters/10-matrizenvektoren/hadamard.tex \ chapters/10-matrizenvektoren/uebungsaufgaben/1001.tex \ chapters/10-matrizenvektoren/uebungsaufgaben/1002.tex \ chapters/10-matrizenvektoren/chapter.tex diff --git a/buch/chapters/10-vektorenmatrizen/algebren.tex b/buch/chapters/10-vektorenmatrizen/algebren.tex index 821c408..9e1d3dc 100644 --- a/buch/chapters/10-vektorenmatrizen/algebren.tex +++ b/buch/chapters/10-vektorenmatrizen/algebren.tex @@ -3,5 +3,131 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\section{Algebren -\label{buch:grundlagen:section:algebren}} +\subsection{Algebren +\label{buch:grundlagen:subsection:algebren}} +Die Skalar-Multiplikation eines Vektorraums ist in einem Ring nicht +vorhanden. +Die Menge der Matrizen $M_n(\Bbbk)$ ist sowohl ein Ring als auch +ein Vektorraum. +Man nennt eine {\em $\Bbbk$-Algebra} oder {\em Algebra über $\Bbbk$} +ein Ring $A$, der auch eine $\Bbbk$-Vektorraum ist. +Die Multiplikation des Ringes muss dazu mit der Skalarmultiplikation +verträglich sein. +Dazu müssen Assoziativgesetze +\[ +\lambda(\mu a) = (\lambda \mu) a +\qquad\text{und}\qquad +\lambda(ab) = (\lambda a) b +\] +für $a,b\in A$ und $\lambda,\mu\in\Bbbk$ +und eine Regel der Form +\begin{equation} +a(\lambda b) = \lambda (ab) +\label{buch:vektorenmatrizen:eqn:algebrakommutativ} +\end{equation} +gelten. +Die Bedingung \eqref{buch:vektorenmatrizen:eqn:algebrakommutativ} ist +eine Folge der Forderung, dass die Multiplikation +eine lineare Abbildung sein soll. +Dies bedeutet, dass +\begin{equation} +a(\lambda b+\mu c) = \lambda (ab) + \mu (ac), +\label{buch:vektorenmatrizen:eqn:algebralinear} +\end{equation} +woraus +\eqref{buch:vektorenmatrizen:eqn:algebrakommutativ} +für $\mu=0$ folgt. +Die Regel \eqref{buch:vektorenmatrizen:eqn:algebralinear} +beinhaltet aber auch das Distributivgesetz. +$M_n(\Bbbk)$ ist eine Algebra. + +\subsubsection{Die Algebra der Funktionen $\Bbbk^X$} +Sie $X$ eine Menge und $\Bbbk^X$ die Menge aller Funktionen $X\to \Bbbk$. +Auf $\Bbbk^X$ kann man Addition, Multiplikation mit Skalaren und +Multiplikation von Funktionen punktweise definieren. +Für zwei Funktion $f,g\in\Bbbk^X$ und $\lambda\in\Bbbk$ definiert man +\[ +\begin{aligned} +&\text{Summe $f+g$:} +& +(f+g)(x) &= f(x)+g(x) +\\ +&\text{Skalare $\lambda f$:} +& +(\lambda f)(x) &= \lambda f(x) +\\ +&\text{Produkt $f\cdot g$:} +& +(f\cdot g)(x) &= f(x) g(x) +\end{aligned} +\] +Man kann leicht nachprüfen, dass die Menge der Funktionen $\Bbbk^X$ +mit diesen Verknüfungen die Struktur einer $\Bbbk$-Algebra erhält. + +Die Algebra der Funktionen $\Bbbk^X$ hat auch ein Einselement: +die konstante Funktion +\[ +1\colon [a,b] \to \Bbbk : x \mapsto 1 +\] +mit Wert $1$ erfüllt +\[ +(1\cdot f)(x) = 1(x) f(x) = f(x) +\qquad\Rightarrow\qquad 1\cdot f = f, +\] +die Eigenschaft einer Eins in der Algebra. + +\subsubsection{Die Algebra der stetigen Funktionen $C([a,b])$} +Die Menge der stetigen Funktionen $C([a,b])$ ist natürlich eine Teilmenge +aller Funktionen: $C([a,b])\subset \mathbb{R}^{[a,b]}$ und erbt damit +auch die Algebraoperationen. +Man muss nur noch sicherstellen, dass die Summe von stetigen Funktionen, +das Produkt einer stetigen Funktion mit einem Skalar und das Produkt von +stetigen Funktionen wieder eine stetige Funktion ist. +Eine Funktion ist genau dann stetig, wenn an jeder Stelle der Grenzwert +mit dem Funktionswert übereinstimmt. +Genau dies garantieren die bekannten Rechenregeln für stetige Funktionen. +Für zwei stetige Funktionen $f,g\in C([a,b])$ und einen Skalar +$\lambda\in\mathbb{R}$ gilt +\[ +\begin{aligned} +&\text{Summe:} +& +\lim_{x\to x_0} (f+g)(x) +&= +\lim_{x\to x_0} (f(x)+g(x)) += +\lim_{x\to x_0} f(x) + \lim_{x\to x_0}g(x) += +f(x_0)+g(x_0) = (f+g)(x_0) +\\ +&\text{Skalare:} +& +\lim_{x\to x_0} (\lambda f)(x) +&= +\lim_{x\to x_0} (\lambda f(x)) = \lambda \lim_{x\to x_0} f(x) += +\lambda f(x_0) = (\lambda f)(x_0) +\\ +&\text{Produkt:} +& +\lim_{x\to x_0}(f\cdot g)(x) +&= +\lim_{x\to x_0} f(x)\cdot g(x) += +\lim_{x\to x_0} f(x)\cdot +\lim_{x\to x_0} g(x) += +f(x_0)g(x_0) += +(f\cdot g)(x_0). +\end{aligned} +\] +für jeden Punkt $x_0\in[a,b]$. +Damit ist $C([a,b])$ eine $\mathbb{R}$-Algebra. +Die Algebra hat auch eine Eins, da die konstante Funktion $1(x)=1$ +stetig ist. + + + + + diff --git a/buch/chapters/10-vektorenmatrizen/chapter.tex b/buch/chapters/10-vektorenmatrizen/chapter.tex index 51b91ab..a2fa94b 100644 --- a/buch/chapters/10-vektorenmatrizen/chapter.tex +++ b/buch/chapters/10-vektorenmatrizen/chapter.tex @@ -9,11 +9,12 @@ \rhead{} \input{chapters/10-vektorenmatrizen/linear.tex} -\input{chapters/10-vektorenmatrizen/gruppen.tex} -\input{chapters/10-vektorenmatrizen/ringe.tex} -\input{chapters/10-vektorenmatrizen/algebren.tex} +\input{chapters/10-vektorenmatrizen/skalarprodukt.tex} +\input{chapters/10-vektorenmatrizen/strukturen.tex} +\input{chapters/10-vektorenmatrizen/hadamard.tex} \section*{Übungsaufgaben} +\rhead{Übungsaufgaben} \aufgabetoplevel{chapters/10-vektorenmatrizen/uebungsaufgaben} \begin{uebungsaufgaben} \uebungsaufgabe{1001} diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index fe77009..9848469 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -3,6 +3,336 @@ % % (c) 2021 Prof Dr Andreas Müller, Hochschule Rapeprswil % -\section{Gruppen -\label{buch:grundlagen:setion:gruppen}} -\rhead{Gruppen} +\subsection{Gruppen +\label{buch:grundlagen:subsection:gruppen}} +Die kleinste sinnvolle Struktur ist die einer Gruppe. +Eine solche besteht aus einer Menge $G$ mit einer Verknüpfung, +die additiv +\begin{align*} +G\times G \to G&: (g,h) = gh +\intertext{oder multiplikativ } +G\times G \to G&: (g,h) = g+h +\end{align*} +geschrieben werden kann. +Ein Element $0\in G$ heisst {\em neutrales Element} bezüglich der additiv +geschriebenen Verknüpfung falls $0+x=x$ für alle $x\in G$. +\index{neutrales Element}% +Ein Element $e\in G$ heisst neutrales Element bezüglich der multiplikativ +geschriebneen Verknüpfung, wenn $ex=x$ für alle $x\in G$. +In den folgenden Definitionen werden wir immer die multiplikative +Schreibweise verwenden, für Fälle additiv geschriebener siehe auch die +Beispiele weiter unten. + +\begin{definition} +\index{Gruppe}% +Ein {\em Gruppe} +\index{Gruppe}% +ist eine Menge $G$ mit einer Verknüfung mit folgenden +Eigenschaften: +\begin{enumerate} +\item +Die Verknüpfung ist assoziativ: $(ab)c=a(bc)$ für alle $a,b,c\in G$. +\item +Es gibt ein neutrales Element $e\in G$ +\item +Für jedes Element $g\in G$ gibt es ein Element $h\in G$ mit +$hg=e$. +\end{enumerate} +Das Element $h$ heisst auch das Inverse Element zu $g$. +\end{definition} + +Falls nicht jedes Element invertierbar ist, aber wenigstens ein neutrales +Element vorhanden ist, spricht man von einem {\em Monoid}. +\index{Monoid}% +Hat man nur eine Verknüpfung, spricht man oft von einer {\em Halbruppe}. +\index{Halbgruppe}% + +\begin{definition} +Eine Gruppe $G$ heisst abelsch, wenn $ab=ba$ für alle $a,b\in G$. +\end{definition} + +Additiv geschrieben Gruppen werden immer als abelsch angenommen, +multiplikativ geschrieben Gruppen können abelsch oder nichtabelsch sein. + +\subsubsection{Beispiele von Gruppen} + +\begin{beispiel} +Die Menge $\mathbb{Z}$ mit der Addition ist eine additive Gruppe mit +dem neutralen Element $0$. +Das additive Inverse eines Elementes $a$ ist $-a$. +\end{beispiel} + +\begin{beispiel} +Die von Null verschiedenen Elemente $\Bbbk^*$ eines Zahlekörpers bilden +bezüglich der Multiplikation eine Gruppe mit neutralem Element $1$. +Das multiplikative Inverse eines Elementes $a\in \Bbbk$ mit $a\ne 0$ +ist $a^{-1}=\frac1{a}$. +\end{beispiel} + +\begin{beispiel} +Die Vektoren $\Bbbk^n$ bilden bezüglich der Addition eine Gruppe mit +dem Nullvektor als neutralem Element. +Betrachtet man $\Bbbk^n$ als Gruppe, verliert man die Multiplikation +mit Skalaren aus den Augen. +$\Bbbk^n$ als Gruppe zu bezeichnen ist also nicht falsch, man +verliert dadurch aber +\end{beispiel} + +\begin{beispiel} +Die Menge aller quadratischen $n\times n$-Matrizen $M_n(\Bbbk)$ ist +eine Gruppe bezüglich der Addition mit der Nullmatrix als neutralem +Element. +Bezügich der Matrizenmultiplikation ist $M_n(\Bbbk)$ aber keine +Gruppe, da sich die singulären Matrizen nicht inverieren lassen. +Die Menge der invertierbaren Matrizen +\[ +\operatorname{GL}_n(\Bbbk) += +\{ +A\in M_n(\Bbbk)\;|\; \text{$A$ invertierbar} +\} +\] +ist bezüglich der Multiplikation eine Gruppe. +Die Gruppe $\operatorname{GL}_n(\Bbbk)$ ist eine echte Teilmenge +von $M_n(\Bbbk)$, die Addition und Multiplikation führen im Allgemeinen +aus der Gruppe heraus, es gibt also keine Mögichkeit, in der Gruppe +$\operatorname{GL}_n(\Bbbk)$ diese Operationen zu verwenden. +\end{beispiel} + +\subsubsection{Einige einfache Rechenregeln in Gruppen} +Die Struktur einer Gruppe hat bereits eine Reihe von +Einschränkungen zur Folge. +Zum Beispiel sprach die Definition des neutralen Elements $e$ nur von +Produkten der Form $ex=x$, nicht von Produkten $xe$. +Und die Definition des inversen Elements $h$ von $g$ hat nur +verlangt, dass $gh=e$, es wurde nichts gesagt über das Produkt $hg$. + +\begin{satz} +\label{buch:vektorenmatrizen:satz:gruppenregeln} +Ist $G$ eine Gruppe mit neutralem Element $e$, dann gilt +\begin{enumerate} +\item +$xe=x$ für alle $x\in G$ +\item +Es gibt nur ein neutrales Element. +Wenn also $f\in G$ mit $fx=x$ für alle $x\in G$, ist dann folgt $f=e$. +\item +Wenn $hg=e$ gilt, dann auch $gh=e$ und $h$ ist durch $g$ eindeutig bestimmt. +\end{enumerate} +\end{satz} + +\begin{proof}[Beweis] +Wir beweisen als Erstes den ersten Teil der Eigenschaft~3. +Sei $h$ die Inverse von $g$, also $hg=e$. +Sei weiter $i$ die Inverse von $h$, also $ih=e$. +Damit folgt jetzt +\[ +g += +eg += +(ih)g += +i(hg) += +ie. +\] +Wende man dies auf das Produkt $gh$ an, folgt +\[ +gh += +(ie)h += +i(eh) += +ih += +e +\] +Es ist also nicht nur $hg=e$ sondern immer auch $gh=e$. + +Für eine Inverse $h$ von $g$ folgt +\[ +ge += +g(hg) += +(gh)g += +eg += +g, +\] +dies ist die Eigenschaft~1. + +Sind $f$ und $e$ neutrale Elemente, dann folgt +\[ +f = fe = e +\] +aus der Eigenschaft~1. + +Schliesslich sei $x$ ein beliebiges Inverses von $g$, dann ist +$xg=e$, dann folgt +$x=xe=x(gh)=(xg)h = eh = h$, es gibt also nur ein Inverses von $g$. +\end{proof} + +Diesem Problem sind wir zum Beispiel auch in +Abschnitt~\ref{buch:grundlagen:subsection:gleichungssyteme} +begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist. +Da aber die invertierbaren Matrizen eine Gruppe +bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$. + +\subsubsection{Homomorphismen} +Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus, +dass sie die algebraische Struktur des Vektorraumes respektieren. +Für eine Abbildung zwischen Gruppen heisst dies, dass die Verknüpfung, +das neutrale Element und die Inverse respektiert werden müssen. + +\begin{definition} +Ein Abbildung $\varphi\colon G\to H$ zwischen Gruppen heisst ein +{\em Homomorphismus}, wenn +$\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2)$ für alle $g_1,g_2\in G$ gilt. +\index{Homomorphismus}% +\end{definition} + +Der Begriff des Kerns einer linearen Abbildung lässt sich ebenfalls auf +die Gruppensituation erweitern. +Auch hier ist der Kern der Teil der Gruppe, er unter dem +Homomorphismus ``unsichtbar'' wird. + +\begin{definition} +Ist $\varphi\colon G\to H$ ein Homomorphisus, dann ist +\[ +\ker\varphi += +\{g\in G\;|\; \varphi(g)=e\} +\] +eine Untergruppe. +\index{Kern}% +\end{definition} + +\subsubsection{Normalteiler} +Der Kern eines Homomorphismus ist nicht nur eine Untergruppe, er erfüllt +noch eine zusätzliche Bedingung. +Für jedes $g\in G$ und $h\in\ker\varphi$ gilt +\[ +\varphi(ghg^{-1}) += +\varphi(g)\varphi(h)\varphi(g^{-1}) += +\varphi(g)\varphi(g^{-1}) += +\varphi(gg^{-1}) += +\varphi(e) += +e +\qquad\Rightarrow\qquad +ghg^{-1}\in\ker\varphi. +\] +Der Kern wird also von der Abbildung $h\mapsto ghg^{-1}$, +der {\em Konjugation} in sich abgebildet. + +\begin{definition} +Eine Untergruppe $H \subset G$ heisst ein {\em Normalteiler}, +geschrieben $H \triangleleft G$ +wenn $gHg^{-1}\subset H$ für jedes $g\in G$. +\index{Normalteiler} +\end{definition} + +Die Konjugation selbst ist ebenfalls keine Unbekannte, sie ist uns +bei der Basistransformationsformel schon begegnet. +Die Tatsache, dass $\ker\varphi$ unter Konjugation erhalten bleibt, +kann man also interpretieren als eine Eigenschaft, die unter +Basistransformation erhalten bleibt. + +\subsubsection{Faktorgruppen} +Ein Unterraum $U\subset V$ eines Vektorraumes gibt Anlass zum +Quotientenraum, der dadurch entsteht, dass man die Vektoren in $U$ +zu $0$ kollabieren lässt. +Eine ähnliche Konstruktion könnte man für eine Untergruppe $H \subset G$ +versuchen. +Man bildet also wieder die Mengen von Gruppenelementen, die sich um +ein Elemente in $H$ unterscheiden. +Man kann diese Mengen in der Form $gH$ mit $g\in G$ schreiben. + +Man möchte jetzt aber auch die Verknüpfung für solche Mengen +definieren, natürlich so, dass $g_1H\cdot g_2H = (g_1g_2)H$ ist. +Da die Verknüpfung nicht abelsch sein muss, entsteht hier +ein Problem. +Für $g_1=e$ folgt, dass $Hg_2H=g_2H$ sein muss. +Das geht nur, wenn $Hg_2=g_2H$ oder $g_2Hg_2^{-1}=H$ ist, wenn +also $H$ ein Normalteiler ist. + +\begin{definition} +Für eine Gruppe $G$ mit Normalteiler $H\triangleleft G$ ist die +Menge +\[ +G/H = \{ gH \;|\; g\in G\} +\] +eine Gruppe mit der Verknüpfung $g_1H\cdot g_2H=(g_1g_2)H$. +$G/H$ heisst {\em Faktorgruppe} oder {\em Quotientengruppe}. +\index{Faktorgruppe}% +\index{Quotientengruppe}% +\end{definition} + +Für abelsche Gruppen ist die Normalteilerbedingung keine zusätzliche +Einschränkung, jeder Untergruppe ist auch ein Normalteiler. + +\begin{beispiel} +Die ganzen Zahlen $\mathbb{Z}$ bilden eine abelsche Gruppe und +die Menge der Vielfachen von $n$ +$n\mathbb{Z}\subset\mathbb{Z}$ ist eine Untergruppe. +Da $\mathbb{Z}$ abelsch ist, ist $n\mathbb{Z}$ ein Normalteiler +und die Faktorgruppe $\mathbb{Z}/n\mathbb{Z}$ ist wohldefiniert. +Nur die Elemente +\[ +0+n\mathbb{Z}, +1+n\mathbb{Z}, +2+n\mathbb{Z}, +\dots +(n-1)+n\mathbb{Z} +\] +sind in der Faktorgruppe verschieden. +Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ besteht also aus den Resten +bei Teilung durch $n$. +Diese Gruppe wird in Kapitel~\ref{buch:chapter:endliche-koerper} +genauer untersucht. +\end{beispiel} + +Das Beispiel suggeriert, dass man sich die Elemente von $G/H$ +als Reste vorstellen kann. + +\subsubsection{Darstellungen} +Abstrakt definierte Gruppen können schwierig zu verstehen sein. +Oft hilft es, wenn man eine geometrische Darstellung der Gruppenoperation +finden kann. +Die Gruppenelemente werden dann zu umkehrbaren linearen Operationen +auf einem geeigneten Vektorraum. + +\begin{definition} +\label{buch:vektorenmatrizen:def:darstellung} +Eine Darstellung einer Gruppe $G$ ist ein Homomorphismus +$G\to\operatorname{GL}_(\mathbb{R})$. +\index{Darstellung} +\end{definition} + +\begin{beispiel} +Die Gruppen $\operatorname{GL}_n(\mathbb{Z})$, +$\operatorname{SL}_n(\mathbb{Z})$ oder $\operatorname{SO}(n)$ +sind alle Teilmengen von $\operatorname{GL}_n(\mathbb{R}$. +Die Einbettungsabbildung $G\hookrightarrow \operatorname{GL}_n(\mathbb{R})$ +ist damit automatisch eine Darstellung, sie heisst auch die +{\em reguläre Darstellung} der Gruppe $G$. +\index{reguläre Darstellung} +\end{beispiel} + +In Kapitel~\ref{buch:chapter:permutationen} wird gezeigt, +dass Permutationen einer endlichen eine Gruppe bilden und wie +sie durch Matrizen dargestellt werden können. + + + + + + diff --git a/buch/chapters/10-vektorenmatrizen/hadamard.tex b/buch/chapters/10-vektorenmatrizen/hadamard.tex new file mode 100644 index 0000000..1fd0373 --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/hadamard.tex @@ -0,0 +1,307 @@ +% +% hadamard.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Hadamard-Algebra +\label{buch:section:hadamard-algebra}} +\rhead{Hadamard-Algebra} +Das Matrizenprodukt ist nicht die einzige Möglichkeit, ein Produkt auf +Vektoren oder Matrizen zu definieren. +In diesem Abschnitt soll das Hadamard-Produkt beschrieben werden, +welches zu einer kommutativen-Algebra-Struktur führt. + +% +% Definition des Hadamard-Produktes +% +\subsection{Hadamard-Produkt +\label{buch:vektorenmatrizen:subsection:hadamard-produkt}} +Im Folgenden werden wir $\Bbbk^n =M_{n\times 1}(\Bbbk)$ setzen +und den Fall der Vektoren nicht mehr separat diskutieren. +Die Addition und Multiplikation mit Skalaren ist in +$M_{m\times n}(\Bbbk)$ komponentenweise definiert. +Wir können natürlich auch ein Produkt komponentenweise definieren, +dies ist das Hadamard-Produkt. + +\begin{definition} +Das {\em Hadamard-Produkt} zweier Matrizen +$A,B\in M_{m\times n}(\Bbbk)$ ist definiert als die Matrix +$A\odot B$ +mit den Komponenten +\[ +(A\odot B)_{ij} = (A)_{ij} (B)_{ij}. +\] +Wir nennen $M_{m\times n}(\Bbbk)$ mit der Multiplikation $\odot$ +auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$. +\end{definition} + +Dies ist jedoch nur interessant, wenn $M_{m\times n}(\Bbbk)$ mit diesem +Produkt eine interessante algebraische Struktur erhält. +Dazu müssen die üblichen Verträglichkeitsgesetze zwischen den +Vektorraumoperationen von $M_{m\times n}(\Bbbk)$ und dem neuen Produkt +gelten, wir erhalten dann eine Algebra. +Da alle Operationen elementweise definiert sind, muss man auch alle +Rechengesetze nur elementweise prüfen. +Es gilt +\begin{align*} +A\odot(B\odot C) &= (A\odot B)\odot C +&&\Leftrightarrow& +a_{ij}(b_{ij}c_{ij}) &= (a_{ij}b_{ij})c_{ij} +\\ +A\odot(B+C) &= A\odot B + A\odot C +&&\Leftrightarrow& +a_{ij}(b_{ij}+c_{ij}) &= a_{ij}b_{ij} + a_{ij}c_{ij} +\\ +(A+B)\odot C&=A\odot C+B\odot C +&&\Leftrightarrow& +(a_{ij}+b_{ij})c_{ij}&=a_{ij}c_{ij} + b_{ij}c_{ij} +\\ +(\lambda A)\odot B &= \lambda (A\odot B) +&&\Leftrightarrow& +(\lambda a_{ij})b_{ij}&=\lambda(a_{ij}b_{ij}) +\\ +A\odot(\lambda B)&=\lambda(A\odot B) +&&\Leftrightarrow& +a_{ij}(\lambda b_{ij})&=\lambda(a_{ij}b_{ij}) +\end{align*} +für alle $i,j$. + +Das Hadamard-Produkt ist kommutativ, da die Multiplikation in $\Bbbk$ +kommuativ ist. +Das Hadamard-Produkt kann auch für Matrizen mit Einträgen in einem +Ring definiert werden, in diesem Fall ist es möglich, dass die entsehende +Algebra nicht kommutativ ist. + +Die Hadamard-Algebra hat auch ein Eins-Elemente, nämlich die Matrix, +die aus lauter Einsen besteht. + +\begin{definition} +Die sogenannte {\em Einsmatrix} $U$ ist die Matrix +\[ +U=\begin{pmatrix} +1&1&\dots&1\\ +\vdots&\vdots&\ddots&\vdots\\ +1&1&\dots&1 +\end{pmatrix} +\in +M_{m\times n}(\Bbbk) +\] +mit lauter Einträgen $1\in\Bbbk$. +\end{definition} + +Die Hadamard-Algebra ist ein Spezialfall der Algebra der Funktionen +$\Bbbk^X$. +Ordnet man dem Vektor $v\in \Bbbk^n$ mit den Komponenten $v_i$ +die Abbildung +\[ +v\colon [n] \to \Bbbk: i \mapsto v_i +\] +zu, dann geht die Addition von Vektoren in die Addition von +Funktionen über, die Multiplikation von Skalaren mit Vektoren +geht in die Multiplikation von Funktionen mit Skalaren über +und die Hadamard-Multiplikation geht über in das Produkt von +Funktionen. + +Auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$ kann als Funktionenalgebra +betrachtet werden. +Einer Matrix $A\in H_{m\times n}(\Bbbk)$ ordnet man die Funktion +\[ +a\colon [m]\times [n] : (i,j) \mapsto a_{ij} +\] +zu. +Dabei gehen die Algebraoperationen von $H_{m\times n}(\Bbbk)$ über +in die Algebraoperationen der Funktionenalgebra $\Bbbk^{[m]\times [n]}$. +Aus der Einsmatrix der Hadamard-Algebra wird dabei zur konstanten +Funktion $1$ auf $[m]\times[n]$. + +\subsection{Hadamard-Produkt und Matrizenalgebra +\label{buch:vektorenmatrizen:subsection:vertraeglichkeit}} +Es ist nur in Ausnahmefällen, Hadamard-Produkt und Matrizen-Produkt +gleichzeitig zu verwenden. +Das liegt daran, dass die beiden Produkte sich überhaupt nicht +vertragen. + +\subsubsection{Unverträglichkeit von Hadamard- und Matrizen-Produkt} +Das Hadamard-Produkt und das gewöhnliche Matrizenprodukt sind +in keiner Weise kompatibel. +Die beiden Matrizen +\[ +A=\begin{pmatrix}3&4\\4&5\end{pmatrix} +\qquad\text{und}\qquad +B=\begin{pmatrix}-5&4\\4&-3\end{pmatrix} +\] +sind inverse Matrizen bezüglich des Matrizenproduktes, also +$AB=E$. +Für das Hadamard-Produkt gilt dagegen +\[ +A\odot B += +\begin{pmatrix} +-15& 16\\ + 16&-15 +\end{pmatrix}. +\] +Die Inverse einer Matrix $A$ Bezüglich des Hadamard-Produktes hat +die Einträge $a_{ij}^{-1}$. +Die Matrix $E$ ist bezüglich des gewöhnlichen Matrizenproduktes +invertierbar, aber sie ist bezüglich des Hadamard-Produktes nicht +invertierbar. + +\subsubsection{Einbettung der Hadamard-Algebra ein eine Matrizenalgebra} +Hadamard-Algebren können als Unteralgebren einer Matrizenalgebra +betrachtet werden. +Der Operator $\operatorname{diag}$ bildet Vektoren ab in Diagonalmatrizen +nach der Regel +\[ +\operatorname{diag} +\colon +\Bbbk^n \to M_n(\Bbbk) +: +\begin{pmatrix} +v_1\\ +\vdots\\ +v_n +\end{pmatrix} +\mapsto +\begin{pmatrix} +v_1&\dots&0\\ +\vdots&\ddots&\vdots\\ +0&\dots&v_n +\end{pmatrix} +\] +Das Produkt von Diagonalmatrizen ist besonders einfach. +Für zwei Vektoren $a,b\in\Bbbk^n$ +\[ +a\odot b += +\begin{pmatrix} +a_1b_1\\ +\vdots\\ +a_nb_n +\end{pmatrix} +\mapsto +\begin{pmatrix} +a_1b_1&\dots&0\\ +\vdots&\ddots&\vdots\\ +0&\dots&a_nb_n +\end{pmatrix} += +\begin{pmatrix} +a_1&\dots&0\\ +\vdots&\ddots&\vdots\\ +0&\dots&a_n +\end{pmatrix} +\begin{pmatrix} +b_1&\dots&0\\ +\vdots&\ddots&\vdots\\ +0&\dots&b_n +\end{pmatrix}. +\] +Das Hadamard-Produkt der Vektoren geht also über in das gewöhnliche +Matrizenprodukt der Diagonalmatrizen. + +Für die Hadamard-Matrix ist die Einbettung etwas komplizierter. +Wir machen aus einer Matrix erst einen Vektor, den wir dann mit +dem $\operatorname{diag}$ in eine Diagonalmatrix umwandeln: +\[ +\begin{pmatrix} +a_{11}&\dots&a_{1n}\\ +\vdots&\ddots&\vdots\\ +a_{m1}&\dots +\end{pmatrix} +\mapsto +\begin{pmatrix} +a_{11}\\ +\vdots\\ +a_{1n}\\ +a_{21}\\ +\vdots\\ +a_{2n}\\ +\vdots\\ +a_{nn} +\end{pmatrix} +\] +Bei dieser Abbildung geht die Hadamard-Multiplikation wieder in +das gewöhnliche Matrizenprodukt über. + +% XXX Faltungsmatrizen und Fouriertheorie +\subsubsection{Beispiel: Faltung und Fourier-Theorie} + +\subsection{Weitere Verknüpfungen +\label{buch:vektorenmatrizen:subsection:weitere}} + +\subsubsection{Transposition} +Das Hadamard-Produkt verträgt sich mit der Transposition: +\[ +(A\odot B)^t = A^t \odot B^t. +\] +Insbesondere ist das Hadamard-Produkt zweier symmetrischer Matrizen auch +wieder symmetrisch. + +\subsubsection{Frobeniusnorm} +Das Hadamard-Produkt in der Hadamard-Algebra $H_{m\times n}(\mathbb{R})$ +nimmt keine Rücksicht auf die Dimensionen einer Matrix und ist nicht +unterscheidbar von $\mathbb{R}^{m\times n}$ mit dem Hadamard-Produkt. +Daher darf auch der Begriff einer mit den algebraischen Operationen +verträglichen Norm nicht von von den Dimensionen abhängen. +Dies führt auf die folgende Definition einer Norm. + +\begin{definition} +Die {\em Frobenius-Norm} einer Matrix $A\in H_{m\times n}\mathbb{R})$ +mit den Einträgen $(a_{ij})=A$ ist +\[ +\| A\|_F += +\sqrt{ +\sum_{i,j} a_{ij}^2 +}. +\] +Das {\em Frobenius-Skalarprodukt} zweier Matrizen +$A,B\in H_{m\times n}(\mathbb{R})$ +ist +\[ +\langle A,B\rangle_F += +\sum_{i,j} a_{ij} b_{ij} += +\operatorname{Spur} A^t B +\] +und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$. +\end{definition} + +Für komplexe Matrizen muss + +\begin{definition} +Die {\em komplexe Frobenius-Norm} einer Matrix $A\in H_{m\times n}(\mathbb{C})$ +ist +\[ +\| A\| += +\sqrt{ +\sum_{i,j} |a_{ij}|^2 +} += +\sqrt{ +\sum_{i,u} \overline{a}_{ij} a_{ij} +} +\] +das {\em komplexe Frobenius-Skalarprodukt} zweier Matrizen +$A,B\in H_{m\times n}(\mathbb{C})$ ist das Produkt +\[ +\langle A,B\rangle_F += +\sum_{i,j}\overline{a}_{ij} b_{ij} += +\operatorname{Spur} (A^* B) +\] +und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$. +\end{definition} + +% XXX Frobeniusnorm + +\subsubsection{Skalarprodukt} + +% XXX Skalarprodukt + + + diff --git a/buch/chapters/10-vektorenmatrizen/images/Makefile b/buch/chapters/10-vektorenmatrizen/images/Makefile new file mode 100644 index 0000000..2c94e8a --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/Makefile @@ -0,0 +1,18 @@ +# +# Makefile -- build images +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: ideale.pdf gausszahlen.pdf strukturen.pdf rref.pdf + +ideale.pdf: ideale.tex + pdflatex ideale.tex + +gausszahlen.pdf: gausszahlen.tex + pdflatex gausszahlen.tex + +strukturen.pdf: strukturen.tex + pdflatex strukturen.tex + +rref.pdf: rref.tex + pdflatex rref.tex diff --git a/buch/chapters/10-vektorenmatrizen/images/gausszahlen.pdf b/buch/chapters/10-vektorenmatrizen/images/gausszahlen.pdf Binary files differnew file mode 100644 index 0000000..181499c --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/gausszahlen.pdf diff --git a/buch/chapters/10-vektorenmatrizen/images/gausszahlen.tex b/buch/chapters/10-vektorenmatrizen/images/gausszahlen.tex new file mode 100644 index 0000000..6786f05 --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/gausszahlen.tex @@ -0,0 +1,48 @@ +% +% gausszahlen.tex -- Ganze Gausssche Zahlen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usepackage{color} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=0.8] +\draw[->] (-8.5,0) -- (8.5,0) coordinate[label={$\Re z$}]; +\draw[->] (0,-4.5) -- (0,4.5) coordinate[label={right:$\Im z$}]; +\foreach \x in {-8,...,8}{ + \foreach \y in {-4,...,4}{ + \fill (\x,\y) circle[radius=0.05]; + } +} + + +\coordinate (O) at (0,0); +\coordinate (A) at (2,2); +\coordinate (B) at (-3,1); +\coordinate (C) at (-8,-4); +\coordinate (D) at (-1,3); +\draw[line width=0.5pt] (A)--(D)--(B); +\draw[->,color=red] (O) -- (A); +\draw[->,color=red] (O) -- (B); +\draw[->,color=blue] (O) -- (C); +\draw[->,color=darkgreen] (O) -- (D); +\fill[color=red] (A) circle[radius=0.08]; +\fill[color=red] (B) circle[radius=0.08]; +\fill[color=blue] (C) circle[radius=0.08]; +\fill[color=darkgreen] (D) circle[radius=0.08]; +\fill[color=black] (O) circle[radius=0.08]; +\node[color=red] at (A) [above right] {$z$}; +\node[color=red] at (B) [above left] {$w$}; +\node[color=darkgreen] at (D) [above] {$z+w$}; +\node[color=blue] at (C) [below right] {$z\cdot w$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/10-vektorenmatrizen/images/ideale.pdf b/buch/chapters/10-vektorenmatrizen/images/ideale.pdf Binary files differnew file mode 100644 index 0000000..439afcc --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/ideale.pdf diff --git a/buch/chapters/10-vektorenmatrizen/images/ideale.tex b/buch/chapters/10-vektorenmatrizen/images/ideale.tex new file mode 100644 index 0000000..9793c8e --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/ideale.tex @@ -0,0 +1,72 @@ +% +% ideale.tex -- Ideale in den ganzen Gaussschen Zahlen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\begin{tikzpicture}[>=latex,thick,scale=0.35] +\begin{scope}[xshift=-9.5cm] +\begin{scope} +\clip (-8.3,-8.3) rectangle (8.3,8.3); + \foreach \x in {-8,...,8}{ + \foreach \y in {-8,...,8}{ + \fill (\x,\y) circle[radius=0.08]; + } + } + \foreach \x in {-8,...,8}{ + \foreach \y in {-8,...,8}{ + \fill[color=blue] + ({\x-2*\y},{2*\x+\y}) circle[radius=0.12]; + } + } + \foreach \x in {-8,...,8}{ + \draw[color=blue,line width=0.5pt] + ({\x-2*(-8)},{2*\x+(-8)}) + -- + ({\x-2*8},{2*\x+8}); + } + \foreach \y in {-8,...,8}{ + \draw[color=blue,line width=0.5pt] + ({(-8)-2*\y},{2*(-8)+\y}) + -- + ({8-2*\y},{2*8+\y}); + } +\end{scope} + \draw[->] (-8.3,0) -- (9.1,0) coordinate[label={$\Re z$}]; + \draw[->] (0,-8.3) -- (0,8.9) coordinate[label={right:$\Im z$}]; +\end{scope} + +\begin{scope}[xshift=9.5cm] +\begin{scope} +\clip (-8.3,-8.3) rectangle (8.3,8.3); + \foreach \x in {-8,...,8}{ + \foreach \y in {-8,...,8}{ + \fill[color=red] ({\x-\y},{\x+\y}) circle[radius=0.12]; + } + } + \foreach \x in {-8,...,8}{ + \foreach \y in {-8,...,8}{ + \fill (\x,\y) circle[radius=0.08]; + } + } + \foreach \x in {-8,...,8}{ + \draw[color=red,line width=0.5pt] + ({\x+8},{\x-8}) -- ({\x-8},{\x+8}); + \draw[color=red,line width=0.5pt] + ({-8-\x},{-8+\x}) -- ({8-\x},{8+\x}); + } +\end{scope} + \draw[->] (-8.3,0) -- (9.1,0) coordinate[label={$\Re z$}]; + \draw[->] (0,-8.3) -- (0,8.9) coordinate[label={right:$\Im z$}]; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/10-vektorenmatrizen/images/rref.pdf b/buch/chapters/10-vektorenmatrizen/images/rref.pdf Binary files differnew file mode 100644 index 0000000..56fbfee --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/rref.pdf diff --git a/buch/chapters/10-vektorenmatrizen/images/rref.tex b/buch/chapters/10-vektorenmatrizen/images/rref.tex new file mode 100644 index 0000000..9b2bf50 --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/rref.tex @@ -0,0 +1,253 @@ +% +% rref.tex -- Visualisierung des Gauss-Algorithmus +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} +\def\skala{0.21} +\def\r{0.4} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\pivot#1#2{ + \fill[color=red!20] ({#1-0.5},{-#2+0.5}) circle[radius=\r]; + \draw[color=red] ({#1-0.5},{-#2+0.5}) circle[radius=\r]; +} + +\def\spalteoben#1#2#3{ + \fill[color=blue!20] ({(#1)-0.5+\r},{-(#3)}) + -- ({(#1)-0.5+\r},{-(#2)+0.5}) arc (0:180:\r) + -- ({(#1)-0.5-\r},{-(#3)}) -- cycle; + \draw[color=blue] ({(#1)-0.5+\r},{-(#3)}) + -- ({(#1)-0.5+\r},{-(#2)+0.5}) arc (0:180:\r) + -- ({(#1)-0.5-\r},{-(#3)}); +} + +\def\spalteunten#1#2#3{ + \fill[color=blue!20] ({(#1)-0.5-\r},{-(#2)+1}) + -- ({(#1)-0.5-\r},{-(#3)+0.5}) arc (-180:0:\r) + -- ({(#1)-0.5+\r},{-(#2)+1}); + \draw[color=blue] ({(#1)-0.5-\r},{-(#2)+1}) + -- ({(#1)-0.5-\r},{-(#3)+0.5}) arc (-180:0:\r) + -- ({(#1)-0.5+\r},{-(#2)+1}); +} + +\def\fuellung{ + \fill[color=gray!50] (0,0) rectangle (8,-6); +} +\def\rahmen{ + \draw (0,0) rectangle (8,-6); + \draw (7,0) -- (7,-6); +} + +\def\eins#1#2{ + \fill[color=gray] ({#1-1},{-#2}) rectangle ({#1},{-#2+1}); +} + +\def\null#1#2#3{ + \fill[color=white] ({#1-1-0.01},{-#3-0.01}) + rectangle ({#1+0.01},{-#2+1+0.01}); +} + +\fill[color=darkgreen!20] (-1.0,-10.81) rectangle (67.0,5); +\fill[color=orange!20] (-1.0,-27) rectangle (67.0,-11.94); + +\node at (33,2) [above] {Vorwärtsreduktion}; +\node at (33,-24) [below] {Rückwärtseinsetzen}; + +\draw[->] (9,-3.375)--(11,-3.375); +\draw[->] (21,-3.375)--(23,-3.375); +\draw[->] (33,-3.375)--(35,-3.375); +\draw[->] (45,-3.375)--(47,-3.375); + +\draw[->] (57,-3.375) .. controls (62,-3.375) .. (62,-7.5); +\draw[->] (62,-15.375) .. controls (62,-19.375) .. (57,-19.375); + +\draw[<-] (9,-19.375)--(11,-19.375); +\draw[<-] (21,-19.375)--(23,-19.375); +\draw[<-] (33,-19.375)--(35,-19.375); +\draw[<-] (45,-19.375)--(47,-19.375); + +\begin{scope}[xshift=-0.5cm,scale=1.125] +\fuellung +\pivot{1}{1} +\spalteoben{1}{2}{6} +\rahmen +\end{scope} + +\begin{scope}[xshift=11.5cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\pivot{2}{2} +\spalteoben{2}{3}{6} +\rahmen +\end{scope} + +\begin{scope}[xshift=23.54cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\pivot{3}{3} +\spalteoben{3}{4}{6} +\rahmen +\end{scope} + +\begin{scope}[xshift=35.5cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\pivot{5}{4} +\spalteoben{5}{5}{6} +\rahmen +\end{scope} + +\begin{scope}[xshift=47.5cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\pivot{7}{5} +\spalteoben{7}{6}{6} +\rahmen +\end{scope} + +\begin{scope}[xshift=57.5cm,yshift=-8cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\eins{7}{5} +\null{7}{6}{6} +\rahmen +\end{scope} + +\begin{scope}[xshift=47.5cm,yshift=-16cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\eins{7}{5} +\null{7}{6}{6} +\spalteunten{7}{1}{4} +\rahmen +\end{scope} + +\begin{scope}[xshift=35.5cm,yshift=-16cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\eins{7}{5} +\null{7}{6}{6} +\null{7}{1}{4} +\spalteunten{5}{1}{3} +\rahmen +\end{scope} + +\begin{scope}[xshift=23.5cm,yshift=-16cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\eins{7}{5} +\null{7}{6}{6} +\null{7}{1}{4} +\null{5}{1}{3} +\spalteunten{3}{1}{2} +\rahmen +\end{scope} + +\begin{scope}[xshift=11.5cm,yshift=-16cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\eins{7}{5} +\null{7}{6}{6} +\null{7}{1}{4} +\null{5}{1}{3} +\null{3}{1}{2} +\spalteunten{2}{1}{1} +\rahmen +\end{scope} + +\begin{scope}[xshift=-0.5cm,yshift=-16cm,scale=1.125] +\fuellung +\eins{1}{1} +\null{1}{2}{6} +\eins{2}{2} +\null{2}{3}{6} +\eins{3}{3} +\null{3}{4}{6} +\null{4}{4}{6} +\eins{5}{4} +\null{5}{5}{6} +\null{6}{5}{6} +\eins{7}{5} +\null{7}{6}{6} +\null{7}{1}{4} +\null{5}{1}{3} +\null{3}{1}{2} +\null{2}{1}{1} +\rahmen +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/10-vektorenmatrizen/images/strukturen.pdf b/buch/chapters/10-vektorenmatrizen/images/strukturen.pdf Binary files differnew file mode 100644 index 0000000..14f7e59 --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/strukturen.pdf diff --git a/buch/chapters/10-vektorenmatrizen/images/strukturen.tex b/buch/chapters/10-vektorenmatrizen/images/strukturen.tex new file mode 100644 index 0000000..02ca71d --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/images/strukturen.tex @@ -0,0 +1,122 @@ +% +% strukturen.tex -- Bezug der verschiedenen algebraischen Strukturen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +% assoziative Verknüpfung +\draw[rounded corners=1cm] (-7,-11.5) rectangle (7,7); + +\begin{scope}[yshift=6cm] +\node at (0,0.5) [left] {{\bf assoziative Verknüpfung}:\strut}; +\node at (0,0.5) [right] {$a(bc)=(ab)c\;\forall a,b,c$\strut}; +\node at (0,-0.3) {\small $\mathbb{N}$, $\Sigma^*$}; +\end{scope} + +% Gruppe +\fill[rounded corners=1cm,color=gray!40] (-6.5,-11.0) rectangle (6.5,5.3); +\draw[rounded corners=1cm] (-6.5,-11.0) rectangle (6.5,5.3); + +\begin{scope}[xshift=-3cm,yshift=4.3cm] +\node at (0,0.5) [left] {{\bf Gruppe}:}; +\node at (0,0.5) [right] {neutrales Element $e$:\strut}; +\node at (3.3,0.5) [right] {$eg=ge=g$\strut}; +\node at (5.7,0.5) [right] {$\forall g\in G$\strut}; +\node at (0,0.0) [right] {inverses Element $g^{-1}$:\strut}; +\node at (3.3,0.0) [right] {$gg^{-1}=g^{-1}g=e$\strut}; +\node at (5.7,0.0) [right] {$\forall g\in G$\strut}; +\node at (3,-1) {\small $\mathbb{Z}$, $\operatorname{GL}_n(\mathbb R)$, $S_n$, $A_n$}; +\end{scope} + +% abelsche Gruppe +\fill[rounded corners=0.7cm,color=gray!20] (-6.2,-10.7) rectangle (6.2,2.7); +\draw[rounded corners=0.7cm] (-6.2,-10.7) rectangle (6.2,2.7); +\begin{scope}[yshift=1.5cm] +\node at (0,0.5) [left] {{\bf abelsche Gruppe}:\strut}; +\node at (0,0.5) [right] {$a+b=b+a\;\forall a,b$\strut}; +\node at (0,0.0) {Addition\strut}; + +\node at (0,-1) {\small $\mathbb{Q}^*$, $\operatorname{SO}(2)$, $C_n$ }; +\end{scope} + +\fill[rounded corners=0.5cm,color=white] (-2,-10.5) rectangle (6,-0.5); +\fill[rounded corners=0.5cm,color=blue!20] (-6,-10.1) rectangle (2,0); +%\draw[rounded corners=0.5cm] (-6,-10.0) rectangle (2,0); + +% Vektorraum +\begin{scope}[yshift=-1cm] +\node at (-5.8,0.5) [right] {{\bf Vektorraum}:\strut}; +\node at (-5.8,0.0) [right] {Skalarmultiplikation\strut}; + +\node at (-5.8,-0.5) [right] {$\lambda(a+b)=\lambda a+\lambda b$\strut}; +\node at (-5.8,-1.0) [right] {$(\lambda+\mu)a=\lambda a+\mu a$\strut}; +\node at (-5.8,-1.5) [right] {$\forall\lambda,\mu\in \Bbbk\;\forall a,b\in V$}; + +\node at (-5.8,-2.5) [right] {\small $\mathbb{R}^n$, $\mathbb{C}^n$, $l^2$}; +\end{scope} + +\fill[rounded corners=0.5cm,color=red!40,opacity=0.5] + (-2,-10.5) rectangle (6,-0.5); +\draw[rounded corners=0.5cm] (-2,-10.5) rectangle (6,-0.5); + +\begin{scope}[yshift=-1cm] +\node at (0,0.0) {{\bf Algebra}:\strut}; +\node at (0,-1.0) {$a(\lambda b) = \lambda ab$\strut}; +\node at (0,-1.5) {$\forall a,b\in A, \lambda\in \Bbbk$\strut}; +\node at (0,-3.0) {\small $c_0(\mathbb{R})$}; +\end{scope} + +\begin{scope}[yshift=-1cm] +\node at (5.8,0) [left] {{\bf Ring}:}; +\node at (5.8,-0.5) [left] {Multiplikation}; + +\node at (5.8,-1.0) [left] {$a(b+c)=ab+ac$\strut}; +\node at (5.8,-1.5) [left] {$(a+b)c=ac+bc$\strut}; +\node at (5.8,-2.0) [left] {$\forall a,b,c\in R$\strut}; + +\node at (5.8,-3) [left] {\small $c_0(\mathbb{Z})$, $L^2(\mathbb R)$}; +\end{scope} + +\fill[rounded corners=0.3cm,color=yellow!20,opacity=0.5] + (-1.8,-10.3) rectangle (5.8,-4.5); +\draw[rounded corners=0.3cm] (-1.8,-10.3) rectangle (5.8,-4.5); + +% boundary of blue area +\draw[rounded corners=0.5cm] (-6,-10.1) rectangle (2,0); + +\begin{scope}[yshift=-5cm] +\node at (5.6,0) [left] {{\bf Ring mit Eins}:}; +\node at (5.6,-1) [left] {$1\cdot a= a\cdot 1 = a\forall a\in R$\strut}; +\node at (5.6,-3) [left] {\small $\mathbb{Z}[X]$, $M_n(\mathbb{Z})$}; +\end{scope} + +\begin{scope}[yshift=-5cm] +\node at (0,0) {{\bf Algebra mit Eins}}; +\node at (0,-1.2) {\small $M_n(\mathbb R)$, $C([a,b])$}; +\end{scope} + +\fill[rounded corners=0.1cm,color=darkgreen!20] + (-1.6,-9.9) rectangle (1.6,-6.9); +\draw[rounded corners=0.1cm] (-1.6,-9.9) rectangle (1.6,-6.9); + +\begin{scope}[yshift=-7cm] +\node at (0,-0.3) {{\bf Körper}:\strut}; +\node at (0,-1) {$a\in K\setminus\{0\}\Rightarrow \exists a^{-1}$\strut}; +\node at (0,-2.2) {\small $\mathbb{F}_p$, $\mathbb{R}$, $\mathbb{C}$, $\mathbb{Q}(X)$}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/10-vektorenmatrizen/koerper.tex b/buch/chapters/10-vektorenmatrizen/koerper.tex new file mode 100644 index 0000000..e1dda6d --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/koerper.tex @@ -0,0 +1,20 @@ +% +% koerper.tex -- Definition eines Körpers +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschwêizer Fachhochschule +% +\subsection{Körper +\label{buch:subsection:koerper}} +Die Multiplikation ist in einer Algebra nicht immer umkehrbar. +Die Zahlenkörper von Kapitel~\ref{buch:chapter:zahlen} sind also +sehr spezielle Algebren, man nennt sie Körper. +In diesem Abschnitt sollen die wichtigsten Eigenschaften von Körpern +zusammengetragen werden. + + +XXX TODO + + + + + diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex index 25fa1af..2fcf199 100644 --- a/buch/chapters/10-vektorenmatrizen/linear.tex +++ b/buch/chapters/10-vektorenmatrizen/linear.tex @@ -6,3 +6,1130 @@ \section{Lineare Algebra \label{buch:grundlagen:section:linearealgebra}} \rhead{Lineare Algebra} +In diesem Abschnitt tragen wir die bekannten Resultate der linearen +Algebra zusammen. +Meistens lernt man diese zuerst für Vektoren und Gleichungssyteme mit +reellen Variablen. +In der linearen Algebra werden aber nur die arithmetischen +Grundoperationen verwendet, es gibt also keinen Grund, warum sich +die Theorie nicht über einem beliebigen Zahlenkörper entwickeln +lassen sollte. +Die in Kapitel~\ref{buch:chapter:endliche-koerper} untersuchten +endlichen Körper sind zum Beispiel besser geeignet für Anwendungen in +der Kryptographie oder für die diskrete schnelle Fourier-Transformation. +Daher geht es in diesem Abschnitt weniger darum alles herzuleiten, +sondern vor allem darum, die Konzepte in Erinnerung zu rufen und +so zu formulieren, dass offensichtlich wird, dass alles mit einem +beliebigen Zahlkörper $\Bbbk$ funktioniert. + +% +% Vektoren +% +\subsection{Vektoren +\label{buch:grundlagen:subsection:vektoren}} +Koordinatensysteme haben ermöglicht, Punkte als Zahlenpaare zu beschreiben. +Dies ermöglicht, geometrische Eigenschaften als Gleichungen auszudrücken, +aber mit Punkten kann man trotzdem noch nicht rechnen. +Ein Vektor fasst die Koordinaten eines Punktes in einem Objekt zusammen, +mit dem man auch rechnen und zum Beispiel Parallelverschiebungen +algebraisieren kann. +Um auch Streckungen ausdrücken zu können, wird auch eine Menge von +Streckungsfaktoren benötigt, mit denen alle Komponenten eines Vektors +multipliziert werden können. +Sie heissen auch {\em Skalare} und liegen in $\Bbbk$. + +\subsubsection{Zeilen- und Spaltenvektoren} +Vektoren sind Tupel von Elementen aus $\Bbbk$. + +\begin{definition} +Ein $n$-dimensionaler {\em Spaltenvektor} ist ein $n$-Tupel von Zahlen aus +$\Bbbk$ geschrieben als +\[ +v = \begin{pmatrix} v_1\\v_2\\\vdots\\v_n\end{pmatrix} +\in \Bbbk^n. +\] +Ein $m$-dimensionaler {\em Zeilenvektor} wird geschrieben als +\[ +u = \begin{pmatrix}u_1&u_2&\dots&u_m\end{pmatrix} \in \Bbbk^m. +\] +\end{definition} + +Für Vektoren gleicher Dimension sind zwei Rechenoperationen definiert. +Die {\em Addition von Vektoren} $a,a\in\Bbbk^n$ und die Multiplikation +eines Vektors mit einem Skalar $\lambda\in\Bbbk$ erfolgt elementweise: +\[ +a+b += +\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} ++ +\begin{pmatrix}b_1\\\vdots\\b_n\end{pmatrix} += +\begin{pmatrix}a_1+b_1\\\vdots\\a_n+b_n\end{pmatrix}, +\qquad +\lambda a += +\lambda +\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} += +\begin{pmatrix}\lambda a_1\\\vdots\\\lambda a_n\end{pmatrix}. +\] +Die üblichen Rechenregeln sind erfüllt, nämlich +\begin{equation} +\begin{aligned} +&\text{Kommutativität:} +& +a+b&=b+a +&& +&&\forall a,b\in V +\\ +&\text{Assoziativgesetze:} +& +(a+b)+c&=a+(b+c) +& +(\lambda\mu)a&=\lambda(\mu a) +&&\forall a,b,c\in V,\; \lambda,\mu\in\Bbbk +\\ +&\text{Distributivgesetze:} +& +\lambda(a+b)&=\lambda a + \lambda b +& +(\lambda+\mu)a&=\lambda a + \mu a +&&\forall a,b\in V,\; \lambda,\mu\in\Bbbk. +\\ +\end{aligned} +\label{buch:vektoren-und-matrizen:eqn:vrgesetze} +\end{equation} +Diese Gesetze drücken aus, dass man mit Vektoren so rechnen kann, wie man +das in der Algebra gelernt hat, mit der einzigen Einschränkung, dass +man Skalare immer links von Vektoren schreiben muss. +Die Distributivgesetze zum Beispiel sagen, dass man Ausmultipilizieren +oder Ausklammern kann genauso wie in Ausdrücken, die nur Zahlen enthalten. + +Man beachte, dass es im allgemeinen kein Produkt von Vektoren gibt. +Das aus der Vektorgeometrie bekannte Vektorprodukt ist eine Spezialität +des dreidimensionalen Raumes, es gibt keine Entsprechung dafür in anderen +Dimensionen. + +\subsubsection{Standardbasisvektoren} +In $\Bbbk^n$ findet man eine Menge von speziellen Vektoren, durch die +man alle anderen Vektoren ausdrücken kann. +Mit den sogenannten {\em Standardbasisvektoren} +\[ +e_1=\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}, +e_2=\begin{pmatrix}0\\1\\\vdots\\0\end{pmatrix}, +\dots, +e_n=\begin{pmatrix}0\\0\\\vdots\\1\end{pmatrix} +\] +kann der Vektor $a\in\Bbbk^n$ als +\[ +a += +\begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix} += +a_1 \begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix} ++ +a_2 \begin{pmatrix}0\\1\\\vdots\\0\end{pmatrix} ++ +\dots ++ +a_n \begin{pmatrix}0\\0\\\vdots\\1\end{pmatrix} += +a_1e_1+a_2e_2+\dots+a_ne_n +\] +ausgedrückt werden. + +\subsubsection{Vektorraum} +Die Rechnungen, die man gemäss der Rechengesetze +\eqref{buch:vektoren-und-matrizen:eqn:vrgesetze} +anstellen kann, verlangen nicht, dass Elemente $a$ und $b$, mit denen man +da rechnet, Zeilen- oder Spaltenvektoren sind. +Jede Art von mathematischem Objekt, mit dem man so rechen kann, +kann als (abstrakter) Vektor betrachtet werden. + +\begin{definition} +Eine Menge $V$ von Objekten, auf der zwei Operationen definiert, +nämlich die Addition, geschrieben $a+b$ für $a,b\in V$ und die +Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und +$\lambda\in \Bbbk$, heisst ein {\em $\Bbbk$-Vektorraum} oder {\em Vektorraum +über $\Bbbk$} (oder +einfach nur {\em Vektorraum}, wenn $\Bbbk$ aus dem Kontext klar sind), +wenn die Rechenregeln~\eqref{buch:vektoren-und-matrizen:eqn:vrgesetze} +gelten +\end{definition} + +Die Mengen von Spaltenvektoren $\Bbbk^n$ sind ganz offensichtlich +Vektorräume. +Die in Kapitel~\ref{buch:chapter:polynome} studierten Mengen von +Polynomen mit Koeffizienten in $\Bbbk$ sind ebenfalls Vektorräume. + +\begin{beispiel} +Die Zahlenmenge $\mathbb{C}$ ist ein $\mathbb{R}$-Vektorraum. +Elemente von $\mathbb{C}$ können addiert und mit reellen Zahlen +multipliziert werden. +Die Rechenregeln für die komplexen Zahlen umfassen auch alle Regeln +\eqref{buch:vektoren-und-matrizen:eqn:vrgesetze}, also ist +$\mathbb{C}$ ein Vektorraum über $\mathbb{R}$. +\end{beispiel} + +\begin{beispiel} +Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$ +bildet ein Vektorraum. +Funktionen können addiert und mit reellen Zahlen multipliziert werden: +\[ +(f+g)(x) = f(x) + g(x) +\qquad\text{und}\qquad +(\lambda f)(x) = \lambda f(x). +\] +Dies reicht aber noch nicht ganz, denn $f+g$ und $\lambda f$ müssen +ausserdem auch {\em stetige} Funktionen sein. +Das dem so ist, lernt man in der Analysis. +Die Vektorraum-Rechenregeln +\eqref{buch:vektoren-und-matrizen:eqn:vrgesetze} sind ebenfalls erfüllt. +\end{beispiel} + +Die Beispiele zeigen, dass der Begriff des Vektorraums die algebraischen +Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer +Objekte beschreiben kann. +Alle Erkenntnisse, die man ausschliesslich aus Vekotorraumeigenschaften +gewonnen hat, sind auf alle diese Objekte übertragbar. +Im folgenden werden wir alle Aussagen für einen Vektorraum $V$ formulieren, +wenn wir die Darstellung als Tupel $\Bbbk^n$ nicht brauchen. + +\subsubsection{Gleichungssysteme in Vektorform} +Die Vektorraum-Operationen erlauben nun auch, lineare Gleichungssysteme +in {\em Vektorform} zu schreiben: +\index{Vektorform eines Gleichungssystems}% +\begin{equation} +\left. +\begin{linsys}{4} +a_{11} x_1 &+& \dots &+& a_{1n}x_n &=& b_1\\ +\vdots & & \ddots& & \vdots & & \vdots \\ +a_{m1} x_1 &+& \dots &+& a_{1n}x_n &=& b_m\\ +\end{linsys} +\quad +\right\} +\qquad +\Rightarrow +\qquad +x_1 +\begin{pmatrix}a_{11}\\\vdots\\a_{m1} \end{pmatrix} ++ +\dots ++ +x_n +\begin{pmatrix}a_{1n}\\\vdots\\a_{mn} \end{pmatrix} += +\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix} +\label{buch:vektoren-und-matrizen:eqn:vektorform} +\end{equation} +Die rechte Seite von~\eqref{buch:vektoren-und-matrizen:eqn:vektorform} +ist eine Linearkombination der Spaltenvektoren. + +\begin{definition} +Eine Linearkombination der Vektoren $v_1,\dots,v_n\in V$ ist ein Ausdruck +der Form +\[ +v += +\lambda_1v_1+\dots + \lambda_n v_n +\] +mit $\lambda_1,\dots,\lambda_n\in \Bbbk$. +\end{definition} + +Die Menge aller Vektoren, die sich als Linearkombinationen einer gegebenen +Menge ausdrücken lässt, heisst der aufgespannte Raum. + +\begin{definition} +\index{aufgespannter Raum}% +Sind $a_1,\dots,a_n\in V$ Vektoren, dann heisst die Menge +\[ +\langle a_1,\dots,a_n\rangle += +\{x_1a_1+\dots+x_na_n\;|\; x_1,\dots,x_n\in\Bbbk\} +\] +aller Vektoren, die sich durch Linearkombination aus den Vektoren +$a_1,\dots,a_n$ gewinnen lassen, der von $a_1,\dots,a_n$ +aufgespannte Raum. +\end{definition} + +\subsubsection{Lineare Abhängigkeit} +Die Gleichung~\eqref{buch:vektoren-und-matrizen:eqn:vektorform} +drückt aus, dass sich der Vektor $b$ auf der rechten Seite als +Linearkombination der Spaltenvektoren ausdrücken lässt. +Oft ist eine solche Darstellung auf nur eine Art und Weise möglich. +Betrachten wir daher jetzt den Fall, dass es zwei verschiedene +Linearkombinationen der Vektoren $a_1,\dots,a_n$ gibt, die beide den +Vektor $b$ ergeben. +Deren Differenz ist +\begin{equation} +\left. +\begin{linsys}{4} +x_1 a_1 &+& \dots &+& x_n a_n &=& b \\ +x_1'a_1 &+& \dots &+& x_n'a_n &=& b \\ +\end{linsys} +\quad\right\} +\qquad +\Rightarrow +\qquad +(\underbrace{x_1-x_1'}_{\lambda_1}) a_1 ++ +\dots ++ +(\underbrace{x_n-x_n'}_{\lambda_n}) a_n += +0. +\label{buch:vektoren-und-matrizen:eqn:linabhkomb} +\end{equation} +Die Frage, ob ein Gleichungssystem genau eine Lösung hat, hängt also +damit zusammen, ob es Zahlen $\lambda_1,\dots,\lambda_n$ gibt, für +die die Gleichung~\label{buch:vektoren-und-matrizen:eqn:linabhkomb} +erfüllt ist. + +\begin{definition} +Die Vektoren $a_1,\dots,a_n$ heissen linear abhängig, wenn es Zahlen +$\lambda_1,\dots,\lambda_n\in\Bbbk$ gibt, die nicht alle $0$ sind, so dass +\begin{equation} +\lambda_1a_1+\dots+\lambda_na_n = 0. +\label{buch:vektoren-und-matrizen:eqn:linabhdef} +\end{equation} +Die Vektoren heissen linear abhängig, wenn aus +\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} +folgt, dass alle $\lambda_1,\dots,\lambda_n=0$ sind. +\end{definition} + +Lineare Abhängigkeit der Vektoren $a_1,\dots,a_n$ bedeutet auch, dass +man einzelne der Vektoren durch andere ausdrücken kann. +Hat man nämlich eine +Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und +ist der Koeffizient $\lambda_k\ne 0$, dann kann man nach $a_k$ auflösen: +\[ +a_k = -\frac{1}{\lambda_k}(\lambda_1a_1+\dots+\widehat{\lambda_ka_k}+\dots+\lambda_na_n). +\] +Darin bedeutet der Hut, dass der entsprechende Term weggelassen werden +muss. +Da dies für jeden von $0$ verschiedenen Koeffizienten möglich ist, +sagt man eben nicht, $a_k$ ist linear abhängig von den anderen, sondern +man sagt $a_1,\dots,a_n$ sind (untereinander) linear abhängig. + +\subsubsection{Basis} +Ein lineares Gleichungssystem fragt danach, ob und wie ein Vektor $b$ als +Linearkombination der Vektoren $a_1,\dots,a_n$ ausgedrückt werden kann. +Wenn dies eindeutig möglich ist, dann haben die Vektoren $a_1,\dots,a_n$ +offenbar eine besondere Bedeutung. + +\begin{definition} +\index{Basis}% +\index{Dimension}% +Eine linear unabhängig Menge von Vektoren +$\mathcal{B}=\{a_1,\dots,a_n\}\subset V$ +heisst {\em Basis} von $V$. +Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst +{\em Dimension} von $V$. +\end{definition} + +Die Standardbasisvektoren bilden eine Basis von $V=\Bbbk^n$. + +\subsubsection{Unterräume} +Die Mengen $\langle a_1,\dots,a_n\rangle$ sind Teilmengen +von $V$, in denen die Addition von Vektoren und die Multiplikation mit +Skalaren immer noch möglich ist. + +\begin{definition} +Eine Teilmenge $U\subset V$ heisst ein {\em Unterraum} von $V$, wenn +$U$ selbst ein $\Bbbk$-Vektorraum ist, also +\[ +\begin{aligned} +a,b&\in U &&\Rightarrow &a+b&\in U +\\ +a&\in U, \lambda\in\Bbbk &&\Rightarrow & \lambda a&\in U +\end{aligned} +\] +gilt. +\end{definition} + +% +% Matrizen +% +\subsection{Matrizen +\label{buch:grundlagen:subsection:matrizen}} +Die Koeffizienten eines linearen Gleichungssystems finden in einem +Zeilen- oder Spaltenvektor nicht Platz. +Wir erweitern das Konzept daher in einer Art, dass Zeilen- und +Spaltenvektoren Spezialfälle sind. + +\subsubsection{Definition einer Matrix} +\begin{definition} +Eine $m\times n$-Matrix $A$ (über $\Bbbk$) ist rechteckiges Schema +\index{Matrix}% +\[ +A += +\begin{pmatrix} +a_{11}&a_{12}&\dots &a_{1n}\\ +a_{21}&a_{22}&\dots &a_{2n}\\ +\vdots&\vdots&\ddots&\vdots\\ +a_{m1}&a_{m2}&\dots &a_{mn}\\ +\end{pmatrix} +\] +mit $a_{ij}\in\Bbbk$. +Die Menge aller $m\times n$-Matrizen wird mit +\[ +M_{m\times n}(\Bbbk) = \{ A\;|\; \text{$A$ ist eine $m\times n$-Matrix}\}. +\] +Falls $m=n$ gilt, heisst die Matrix $A$ auch {\em quadratisch} +\index{quadratische Matrix}% +Man kürzt die Menge der quadratischen Matrizen als +$M_n(\Bbbk) = M_{n\times n}(\Bbbk)$ ab. +\end{definition} + +Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen +$v\in M_{n\times 1}(\Bbbk)$, die $n$-dimensionalen Zeilenvetoren $u\in\Bbbk^n$ +sind $1\times n$-Matrizen $v\in M_{1\times n}(\Bbbk)$. +Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus +den $n$ Spaltenvektoren +\[ +a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},\quad +a_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix},\dots, +a_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}. +\] +Sie besteht auch aus den $m$ Zeilenvektoren +\[ +\begin{pmatrix} a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix} +\] +mit $k=1,\dots,m$. + +\subsubsection{Addition und Multiplikation mit Skalaren} +Die $m\times n$-Matrizen $M_{m\times n}(\Bbbk)$ bilden eine Vektorraum, +die Addition von Matrizen und die Multiplikation wird wie folgt definiert. + +\begin{definition} +Sind $A,B\in M_{m\times n}(\Bbbk)$ und $\lambda\in\Bbbk$, dann setzt man +\[ +A+B += +\begin{pmatrix} +a_{11}+b_{11}&a_{12}+b_{12}&\dots &a_{1n}+b_{1n}\\ +a_{21}+b_{21}&a_{22}+b_{22}&\dots &a_{2n}+b_{2n}\\ +\vdots &\vdots &\ddots&\vdots \\ +a_{m1}+b_{m1}&a_{m2}+b_{m2}&\dots &a_{mn}+b_{mn} +\end{pmatrix} +\qquad\text{und}\qquad +\lambda A += +\begin{pmatrix} +\lambda a_{11}&\lambda a_{12}&\dots &\lambda a_{1n}\\ +\lambda a_{21}&\lambda a_{22}&\dots &\lambda a_{2n}\\ +\vdots &\vdots &\ddots&\vdots \\ +\lambda a_{m1}&\lambda a_{m2}&\dots &\lambda a_{mn} +\end{pmatrix}. +\] +\end{definition} + +\subsubsection{Multiplikation} +Will man ein lineares Gleichungssystem mit Hilfe der Matrix $A$ der +Koeffizienten schreiben, bekommt es die Form $Ax=b$, wobei der Vektor +der rechten Seiten ist, und $x$ ein Vektor von unbekannten Zahlen. +Dies ist jedoch nur sinnvoll, wenn das Produkt $Ax$ sinnvoll definiert +werden kann. + +\begin{definition} +Eine $m\times n$-Matrix $A\in M_{m\times n}(\Bbbk)$ und eine +$n\times l$-Matrix $B\in M_{n\times l}(\Bbbk)$ haben als Produkt +eine $n\times l$-Matrix $C=AB\in M_{n\times l}(\Bbbk)$ mit den +Koeffizienten +\begin{equation} +c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. +\label{buch:vektoren-unbd-matrizen:eqn:matrixmultiplikation} +\end{equation} +\end{definition} + +Die Koeffizienten $a_{ik}$ kommen aus der Zeile $i$ von $A$, die Koeffizienten +$b_{kj}$ stehen in der Spalte $j$ von $B$, die Multiplikationsregel +\eqref{buch:vektoren-unbd-matrizen:eqn:matrixmultiplikation} +besagt also, dass das Element $c_{ij}$ entsteht als das Produkt +der Zeile $i$ von $A$ mit der Spalte $j$ von $C$. + +\subsubsection{Einheitsmatrix} +Welche $m\times m$-Matrix $I\in M_{m}(\Bbbk)$ hat die Eigenschaft, dass +$IA=A$ für jede beliebige Matrix $A\in M_{m\times n}(\Bbbk)$. +Wir bezeichnen die Einträge von $I$ mit $\delta_{ij}$. +Die Bedingung $IA=A$ bedeutet +\[ +a_{ij} = \delta_{i1}a_{1j} + \dots + \delta_{im}a_{mj}, +\] +Da auf der linken Seite nur $a_{ij}$ vorkommt, müssen alle Terme auf der +rechten Seite verschwinden ausser dem Term mit $a_{ij}$, dessen +Koeffizient $\delta_{ii}=1$ sein muss. +Die Koeffizienten sind daher +\[ +\delta_{ij} += +\begin{cases} +1&\qquad i=j\\ +0&\qquad\text{sonst} +\end{cases} +\] +Die Zahlen $\delta_{ij}$ heissen auch das {\em Kronecker-Symbol} oder +{\em Kronecker-Delta}. +\index{Kronecker-$\delta$}% +\index{Kronecker-Symbol}% +Die Matrix $I$ hat die Einträge $\delta_{ij}$ und heisst die +{\em Einheitsmatrix} +\index{Einheitsmatrix}% +\[ +I += +\begin{pmatrix} +1 &0 &\dots &0 \\ +0 &1 &\dots &0 \\[-2pt] +\vdots&\vdots&\ddots&\vdots\\ +0 &0 &\dots &1 +\end{pmatrix}. +\] + + +% +% Gleichungssysteme +% +\subsection{Gleichungssysteme +\label{buch:grundlagen:subsection:gleichungssyteme}} +Lineare Gleichungssysteme haben wir bereits in Vektorform geschrieben. +Matrizen wurden eingeführt, um sie noch kompakter in der Matrixform +$Ax=b$ zu schreiben. +In diesem Abschnitt sollen die bekannten Resultate über die Lösung +von linearen Gleichungssytemen zusammengetragen werden. + +\subsubsection{Eindeutige Lösung} +Mit Hilfe der Vektorform eines linearen Gleichungssystems wurde +gezeigt, dass die Lösung genau dann eindeutig ist, wenn die Spaltenvektoren +der Koeffizientenmatrix linear unabhängig sind. +Dies bedeutet, dass das Gleichungssystem +\begin{equation} +\begin{linsys}{3} +a_{11}x_1 &+& \dots &+& a_{1n}x_n &=& 0 \\ +\vdots & & \ddots& & \vdots & & \vdots \\ +a_{m1}x_1 &+& \dots &+& a_{mn}x_n &=& 0 +\end{linsys} +\label{buch:grundlagen:eqn:homogenessystem} +\end{equation} +eine nichttriviale Lösung haben muss. +Das Gleichungssystem $Ax=b$ ist also genau dann eindeutig lösbar, wenn +das homogene Gleichungssystem $Ax=0$ nur die Nulllösung hat. + +\subsubsection{Inhomogene und homogene Gleichungssysteme} +Ein Gleichungssystem mit $0$ auf der rechten Seite ist also bereits +ausreichend um zu entscheiden, ob die Lösung eindeutig ist. +Ein Gleichungssystem mit rechter Seite $0$ heisst {\em homogen}. +\index{homogenes Gleichungssystem}% +Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$ +ist $Ax=0$ das zugehörige homogene Gleichungssystem. + +Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die +Lösung $x=0$, man nennt sie auch die {\em triviale} Lösung. +Eine Lösung $x\ne 0$ heisst auch eine nichttriviale Lösung. +Die Lösungen eines inhomgenen Gleichungssystem $Ax=b$ ist also nur dann +eindeutig, wenn das zugehörige homogene Gleichungssystem eine nichttriviale +Lösung hat. + +\subsubsection{Gauss-Algorithmus} +Der Gauss-Algorithmus oder genauer Gausssche Eliminations-Algorithmus +löst ein lineare Gleichungssystem der +Form~\eqref{buch:vektoren-und-matrizen:eqn:vektorform}. +Die Koeffizienten werden dazu in das Tableau +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline +a_{11}&\dots &a_{1n}&b_1 \\[-2pt] +\vdots&\ddots&\vdots&\vdots\\ +a_{m1}&\dots &a_{mn}&b_m \\ +\hline +\end{tabular} +\] +geschrieben. +Die vertikale Linie erinnert an die Position des Gleichheitszeichens. +Es beinhaltet alle Informationen zur Durchführung des Algorithmus. +Der Algorithmus is so gestaltet, dass er nicht mehr Speicher als +das Tableau benötigt, alle Schritte operieren direkt auf den Daten +des Tableaus. + +In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und +Spalte $j$ ausgewählt, das Elemente $a_{ij}$ heisst das Pivotelement. +\index{Pivotelement}% +Die {\em Pivotdivision} +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline +a_{11}&\dots &a_{1j}&\dots &a_{1n}&b_1 \\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +a_{i1}&\dots &{\color{red}a_{ij}}&\dots &a_{in}&b_i \\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ +\hline +\end{tabular} +\rightarrow +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline +a_{11}&\dots &a_{1j}&\dots &a_{1n}&b_1 \\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +{\color{red}\frac{a_{i1}}{a_{ij}}}&\dots &{\color{red}1}&\dots &{\color{red}\frac{a_{in}}{a_{ij}}}&{\color{red}\frac{b_i}{a_{ij}}}\\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ +\hline +\end{tabular} +\] +stellt sicher, dass das Pivot-Element zu $1$ wird. +\index{Pivotdivision} +Dies ist gleichbedeutend mit der Auflösung der Gleichung $i$ noch der +Variablen $x_j$. +Mit der {\em Zeilensubtraktion} auf Zeile $k\ne i$ können die Einträge in der +Spalte $j$ zu Null gemacht werden. +Dazu wird das $a_{kj}$-fache der Zeile $i$ von Zeile $k$ subtrahiert: +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +a_{i1}&\dots &{\color{red}1}&\dots &a_{in}&b_i \\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +a_{k1}&\dots &a_{kj}&\dots &a_{kn}&b_m \\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +\hline +\end{tabular} +\rightarrow +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +a_{i1}&\dots &{\color{red}1}&\dots &a_{in}&b_i \\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +{\color{blue}a_{k1}-a_{kj}a_{i1}}&\dots &{\color{blue}0}&\dots &{\color{blue}a_{kn}-a_{kj}a_{in}}&{\color{blue}b_m-a_{kj}b_{n}}\\[-2pt] +\vdots& &\vdots&\ddots&\vdots&\vdots\\ +\hline +\end{tabular} +\] +Typischerweise werden nach jeder Pivotdivision mehrer Zeilensubtraktionen +durchgeführt um alle anderen Elemente der Pivotspalte ausser dem +Pivotelement zu $0$ zu machen. +Beide Operationen können in einem Durchgang durchgeführt werden. + +Die beiden Operationen Pivotdivision und Zeilensubtraktion werden jetzt +kombiniert um im linken Teil des Tableaus möglichst viele Nullen und +Einsen zu erzeugen. +Im Idealfall wird ein Tableau der Form +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline + 1& 0&\dots & 0&u_1 \\ + 0& 1&\dots & 0&u_2 \\[-2pt] +\vdots&\vdots&\ddots&\vdots&\vdots\\ + 0& 0&\dots & 1&u_m \\ +\hline +\end{tabular} +\] +erreicht, was natürlich nur $m=n$ möglich ist. +Interpretiert man die Zeilen dieses Tableaus wieder als Gleichungen, +dann liefert die Zeile $i$ den Wert $x_i=u_i$ für die Variable $i$. +Die Lösung kann also in der Spalte rechts abgelesen werden. + +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/10-vektorenmatrizen/images/rref.pdf} +\caption{Zweckmässiger Ablauf der Berechnung des Gauss-Algorithmus. +Falls in einer Spalte kein weiteres von $0$ verschiedenes Pivotelement +zur Verfügung steht, wird die Zeile übersprungen. +Weisse Felder enthalten $0$, dunkelgraue $1$. +Die roten Kreise bezeichnen Pivot-Elemente, die blauen Felder +die mit einer Zeilensubtraktion zu $0$ gemacht werden sollen. +\label{buch:grundlagen:fig:gaussalgorithmus}} +\end{figure} +Die effizienteste Strategie für die Verwendung der beiden Operationen +ist in Abbildung~\ref{buch:grundlagen:fig:gaussalgorithmus} dargestellt. +In der Phase der {\em Vorwärtsreduktion} werden Pivotelemente von links +nach rechts möglichst auf der Diagonale gewählt und mit Zeilensubtraktionen +die darunterliegenden Spalten freigeräumt. +\index{Vorwärtsreduktion}% +Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von +rechts nach links genutzt, um mit Zeilensubtraktionen auch die +Spalten über den Pivotelemnten frei zu räumen. +\index{Rückwärtseinsetzen}% +Wenn in einer Spalte kein von $0$ verschiedenes Element als Pivotelement +zur Verfügung steht, wird diese Spalte übersprungen. +Die so erzeuge Tableau-Form heisst auch die {\em reduzierte Zeilenstufenform} +({\em reduced row echelon form}, RREF). +\index{reduzierte Zeilenstufenform}% +\index{reduced row echelon form}% + +Da der Ablauf des Gauss-Algorithmus vollständig von den Koeffizienten der +Matrix $A$ bestimmt ist, kann er gleichzeitig für mehrere Spalten auf der +rechten Seite oder ganz ohne rechte Seite durchgeführt werden. + +\subsubsection{Lösungsmenge} +\index{Lösungsmenge}% +Die Spalten, in denen im Laufe des Gauss-Algorithmus kein Pivotelement +gefunden werden kann, gehören zu Variablen, nach denen sich das +Gleichungssystem nicht auflösen lässt. +Diese Variablen sind daher nicht bestimmt, sie können beliebig gewählt +werden. +Alle anderen Variablen sind durch diese frei wählbaren Variablen +bestimmt. + +Für ein Gleichungssystem $Ax=b$ mit Schlusstableau +\index{Schlusstableau}% +\begin{equation} +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} +\hline + x_1& x_2&\dots &x_{j_i-1}&{\color{darkgreen}x_{j_1}}&x_{j_1+1}&\dots &x_{j_2-1}&{\color{darkgreen}x_{j_2}}&\dots&{\color{darkgreen}x_{j_k}}& \\ +\hline + 1& 0&\dots & 0&c_{1j_1} & 0&\dots & 0&c_{1j_2} &\dots &c_{1j_k} &d_1 \\ + 0& 1&\dots & 0&c_{2j_1} & 0&\dots & 0&c_{2j_2} &\dots &c_{1j_k} &d_2 \\[-2pt] +\vdots&\vdots&\ddots&\vdots &\vdots &\vdots&\ddots&\vdots&\vdots &\ddots&\vdots &\vdots \\ + 0& 0&\dots & 1&c_{i_1,j_1}& 0&\dots & 0&c_{i_1,j_2} &\dots &c_{i_1j_k} &d_{i_1} \\ + 0& 0&\dots & 0& 0& 1&\dots & 0&c_{i_1+1,j_2}&\dots &c_{i_1+1,j_k}&d_{i_1+1}\\[-2pt] +\vdots&\vdots&\ddots&\vdots &\vdots &\vdots&\vdots&\vdots&\vdots &\ddots&\vdots &\vdots \\ + 0& 0&\dots & 0& 0& 0&\dots & 1&c_{i_2,j_2} &\dots &c_{i_2j_k} &d_{i_2} \\ + 0& 0&\dots & 0& 0& 0&\dots & 0& 0&\dots &c_{i_2+1,j_k}&d_{i_2+1}\\[-2pt] +\vdots&\vdots&\ddots&\vdots &\vdots &\vdots&\ddots&\vdots&\vdots &\ddots&\vdots &\vdots \\ + 0& 0&\dots & 0& 0& 0&\dots & 0& 0&\dots & 0&d_{m} \\ +\hline +\end{tabular} +\end{equation} +mit den $k$ frei wählbaren Variablen +$x_{j_1}, x_{j_2},\dots, x_{j_k}$ kann die Lösungsmenge als +\[ +\mathbb{L} += +\left\{ +\left. +\begin{pmatrix} +d_1\\ +d_2\\ +\vdots\\ +d_{i_1}\\ +d_{i_1+1}\\ +\vdots\\ +d_{i_2}\\ +d_{i_2+1}\\ +\vdots\\ +d_{m} +\end{pmatrix} ++ +{\color{darkgreen}x_{j_1}} +\begin{pmatrix} +-c_{1j_1}\\ +-c_{2j_1}\\ +\vdots\\ +-c_{i_1,j_1}\\ +{\color{darkgreen}1}\\ +\vdots\\ +0\\ +0\\ +\vdots\\ +0\\ +\end{pmatrix} ++ +{\color{darkgreen}x_{j_1}} +\begin{pmatrix} +-c_{1j_2}\\ +-c_{2j_2}\\ +\vdots\\ +-c_{j_1,j_2}\\ +-c_{j_1+1,j_2}\\ +\vdots\\ +-c_{i_2,j_2}\\ +{\color{darkgreen}1}\\ +\vdots\\ +0\\ +\end{pmatrix} ++ +\dots ++ +{\color{darkgreen}x_{j_k}} +\begin{pmatrix} +-c_{1j_k}\\ +-c_{2j_k}\\ +\vdots\\ +-c_{j_1,j_k}\\ +-c_{j_1+1,j_k}\\ +\vdots\\ +-c_{i_2,j_k}\\ +-c_{i_2+1,j_k}\\ +\vdots\\ +0\\ +\end{pmatrix} +\; +\right| +{\color{darkgreen}x_{i_1}},{\color{darkgreen}x_{i_2}},\dots,{\color{darkgreen}x_{i_k}}\in\Bbbk +\right\} +\] +geschrieben werden. +Insbesondere ist die Lösungsmenge $k$-dimensional. + +\subsubsection{Inverse Matrix} +Zu jeder quadratischen Matrix $A\in M_n(\Bbbk)$ kann man versuchen, die +Gleichungen +\[ +Ac_1 = e_1,\quad Ac_2 = e_2, \dots, Ac_n = e_n +\] +mit den Standardbasisvektoren $e_i$ als rechten Seiten zu lösen, wobei +die $c_i$ Vektoren in $\Bbbk^n$ sind. +Diese Vektoren kann man mit Hilfe des Gauss-Algorithmus finden: +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +a_{11}&a_{12}&\dots &a_{1n}&1 &0 &\dots &0 \\ +a_{21}&a_{22}&\dots &a_{2n}&0 &1 &\dots &0 \\ +\vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\ +a_{n1}&a_{n2}&\dots &a_{nn}&0 &0 &\dots &1 \\ +\hline +\end{tabular} +\rightarrow +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +1 &0 &\dots &0 &c_{11}&c_{12}&\dots &c_{1n}\\ +0 &1 &\dots &0 &c_{21}&c_{22}&\dots &c_{2n}\\ +\vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\ +0 &0 &\dots &1 &c_{n1}&c_{n2}&\dots &c_{nn}\\ +\hline +\end{tabular} +\] +Die Vektoren $c_k$ sind die Spaltenvektoren der Matrix $C$ mit den +Einträgen $c_{ij}$. + +Mit den Vektoren $c_k$ können jetzt beliebige inhomogene Gleichungssysteme +$Ax=b$ gelöst werden. +Da $b = b_1e_1 + b_2e_2 + \dots + b_ne_n$, kann man die Lösung $x$ als +$x = b_1c_1+b_2c_2+\dots+b_nc_n$ konstruieren. +Tatsächlich gilt +\begin{align*} +Ax +&= +A( b_1c_1+b_2c_2+\dots+b_nc_n) +\\ +&= +b_1Ac_1 + b_2Cc_2 + \dots + b_nAc_n +\\ +&= +b_1e_1 + b_2e_2 + \dots + b_ne_n += +b. +\end{align*} +Die Linearkombination $x=b_1c_1+\dots+b_nc_n$ kann in Vektorform als $x=Cb$ +geschrieben werden. + +Die Konstruktion von $C$ bedeutet auch, dass $AC=E$, daher heisst $C$ auch +die zu $A$ {\em inverse Matrix}. +\index{inverse Matrix} +Sie wird auch $C=A^{-1}$ geschrieben. + +Die Definition der inversen Matrix stellt sicher, dass $AA^{-1}=I$ gilt, +daraus folgt aber noch nicht, dass auch $A^{-1}A=I$ ist. +Diese Eigenschaft kann man jedoch wie folgt erhalten. +Sei $C$ die inverse Matrix von $A$, also $AC=I$. +Sei weiter $D$ die inverse Matrix von $C$, also $CD=I$. +Dann ist zunächst $A=AE=A(CD)=(AC)D=ID=D$ und weiter +$CA=CD=I$. +Mit der Bezeichnung $C=A^{-1}$ erhalten wir also auch $A^{-1}A=I$. + +Die Eigenschaften der Matrizenmultiplikation stellen sicher, +dass die Menge der invertierbaren Matrizen eine Struktur bilden, +die man Gruppe nennt, die in Abschnitt~\ref{buch:grundlagen:subsection:gruppen} +genauer untersucht wird. +In diesem Zusammenhang wird dann auf +Seite~\pageref{buch:vektorenmatrizen:satz:gruppenregeln} +die Eigenschaft $A^{-1}A=I$ ganz allgemein gezeigt. + +\subsubsection{Determinante} +XXX TODO + +% +% Lineare Abbildungen +% +\subsection{Lineare Abbildungen +\label{buch:grundlagen:subsection:lineare-abbildungen}} +Der besondere Nutzen der Matrizen ist, dass sie auch lineare Abbildungen +zwischen Vektorräumen beschreiben können. +In diesem Abschnitt werden lineare Abbildungen abstrakt definiert +und die Darstellung als Matrix mit Hilfe einer Basis eingeführt. + + +\subsubsection{Definition} +Eine lineare Abbildung zwischen Vektorräumen muss so gestaltet sein, +dass die Operationen des Vektorraums erhalten bleiben. +Dies wird von der folgenden Definition erreicht. + +\begin{definition} +Eine Abbildung $f\colon V\to U$ zwischen Vektorräumen $V$ und $U$ +heisst linear, wenn +\[ +\begin{aligned} +f(v+w) &= f(v) + f(w)&&\forall v,w\in V +\\ +f(\lambda v) &= \lambda f(v) &&\forall v\in V,\lambda \in \Bbbk +\end{aligned} +\] +gilt. +\end{definition} + +Lineare Abbildungen sind in der Mathematik sehr verbreitet. + +\begin{beispiel} +Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen +auf dem Intervall $[a,b]$ und $U=C([a,b])$ die Menge der +stetigen Funktion aif $[a,b]$. +Die Ableitung $\frac{d}{dx}$ macht aus einer Funktion $f(x)$ die +Ableitung $f'(x)$. +Die Rechenregeln für die Ableitung stellen sicher, dass +\[ +\frac{d}{dx} +\colon +C^1([a,b]) \to C([a,b]) +: +f \mapsto f' +\] +eine lineare Abbildung ist. +\end{beispiel} + +\begin{beispiel} +Sei $V$ die Menge der Riemann-integrierbaren Funktionen auf dem +Intervall $[a,b]$ und $U=\mathbb{R}$. +Das bestimmte Integral +\[ +\int_a^b \;\colon V \to U : f \mapsto \int_a^b f(x)\,dx +\] +ist nach den bekannten Rechenregeln für bestimmte Integrale +eine lineare Abbildung. +\end{beispiel} + +\subsubsection{Matrix} +Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung +mit Hilfe von Matrizen nötig. +Sei also $\mathcal{B}=\{b_1,\dots,b_n\}$ eine Basis von $V$ und +$\mathcal{C} = \{ c_1,\dots,c_m\}$ eine Basis von $U$. +Das Bild des Basisvektors $b_i$ kann als Linearkombination der +Vektoren $c_1,\dots,c_m$ dargestellt werden. +Wir verwenden die Bezeichnung +\[ +f(b_i) += +a_{1i} c_1 + \dots + a_{mi} c_m. +\] +Die lineare Abbildung $f$ bildet den Vektor $x$ mit Koordinaten +$x_1,\dots,x_n$ ab auf +\begin{align*} +f(x) +&= +f(x_1b_1 + \dots x_nb_n) +\\ +&= +x_1 f(b_1) + \dots x_nf(b_n) +\\ +&= +x_1(a_{11} c_1 + \dots + a_{m1} c_m) ++ +\dots ++ +x_n(a_{1n} c_1 + \dots + a_{mn} c_m) +\\ +&= +( a_{11} x_1 + \dots + a_{1n} x_n ) c_1 ++ +\dots ++ +( a_{m1} x_1 + \dots + a_{mn} x_n ) c_m +\end{align*} +Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind +also gegeben durch das Matrizenprodukt $Ax$, wenn $x$ der Spaltenvektor +aus den Koordinaten in der Basis $\mathcal{B}$ in $V$ ist. + +Die Matrix einer linearen Abbildung macht Aussagen über eine lineare +Abbilung der Rechnung zugänglich. +Allerdings hängt die Matrix einer linearen Abbildung von der Wahl der +Basis ab. +Gleichzeitig ist dies eine Chance, durch Wahl einer geeigneten Basis +kann man eine Matrix in eine Form bringen, die zur Lösung eines +Problems optimal geeignet ist. + +\subsubsection{Basiswechsel} +In einem Vektorraum $V$ seien zwei Basen $\mathcal{B}=\{b_1,\dots,b_n\}$ +und $\mathcal{B}'=\{b_1',\dots,b_n'\}$ gegeben. +Ein Vektor $v\in V$ kann in beiden beiden Basen dargestellt werden. +Wir bezeichnen mit dem Spaltenvektor $x$ die Koordinaten von $v$ in der +Basis $\mathcal{B}$ und mit dem Spaltenvektor $x'$ die Koordinaten +in der Basisi $\mathcal{B}'$. +Um die Koordinaten umzurechnen, muss man die Gleichung +\begin{equation} +x_1b_1 + \dots + x_nb_n = x_1'b_1' + \dots + x_n'b_n' +\label{buch:vektoren-und-matrizen:eqn:basiswechselgleichung} +\end{equation} +lösen. + +Stellt man sich die Vektoren $b_i$ und $b_j'$ als $m$-dimensionale +Spaltenvektoren vor mit $m\ge n$, dann bekommt +\eqref{buch:vektoren-und-matrizen:eqn:basiswechselgleichung} +die Form eines Gleichungssystems +\[ +\begin{linsys}{6} +b_{11}x_1&+& \dots &+&b_{1n}x_n&=&b_{11}'x_1'&+& \dots &+&b_{1n}'x_n'\\ +\vdots & & \ddots& &\vdots & &\vdots & & \ddots& &\vdots \\ +b_{m1}x_1&+& \dots &+&b_{mn}x_n&=&b_{m1}'x_1'&+& \dots &+&b_{mn}'x_n' +\end{linsys} +\] +Dieses Gleichungssystem kann man mit Hilfe eines Gauss-Tableaus lösen. +Wir schreiben die zugehörigen Variablen +\[ +\renewcommand{\arraystretch}{1.1} +\begin{tabular}{|>{$}c<{$} >{$}c<{$} >{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +x_1&\dots&x_n&x_1'&\dots&x_n'\\ +\hline +b_{11}&\dots &b_{1n}&b_{11}'&\dots &v_{1n}'\\ +\vdots&\ddots&\vdots&\vdots &\ddots&\vdots \\ +b_{n1}&\dots &b_{nn}&b_{n1}'&\dots &v_{nn}'\\ +\hline +b_{n+1,1}&\dots &b_{n+1,n}&b_{n+1,1}'&\dots &v_{n+1,n}'\\ +\vdots&\ddots&\vdots&\vdots &\ddots&\vdots \\ +b_{m1}&\dots &b_{mn}&b_{m1}'&\dots &v_{mn}'\\ +\hline +\end{tabular} +\rightarrow +\begin{tabular}{|>{$}c<{$} >{$}c<{$} >{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +x_1&\dots&x_n&x_1'&\dots&x_n'\\ +\hline +1 &\dots &0 &t_{11} &\dots &t_{1n} \\ +\vdots&\ddots&\vdots&\vdots &\ddots &\vdots \\ +0 &\dots &1 &t_{n1} &\dots &t_{nn} \\ +\hline +0 &\dots &0 &{\color{red}0} &{\color{red}\dots} &{\color{red}0}\\ +\vdots&\ddots&\vdots&{\color{red}\vdots}&{\color{red}\ddots}&{\color{red}\vdots}\\ +0 &\dots &0 &{\color{red}0} &{\color{red}\dots} &{\color{red}0}\\ +\hline +\end{tabular} +\] +Das rechte untere Teiltableau enthält lauter Nullen genau dann, wenn jeder +Vektor in $V$ sich in beiden Mengen $\mathcal{B}$ und $\mathcal{B}'$ +ausdrücken lässt. +Dies folgt aber aus der Tatsache, dass $\mathcal{B}$ und $\mathcal{B}'$ +beide Basen sind, also insbesondere den gleichen Raum aufspannen. +Die $n\times n$-Matrix $T$ mit Komponenten $t_{ij}$ rechnet Koordinaten +in der Basis $\mathcal{B}'$ um in Koordinaten in der Basis $\mathcal{B}$. + +\subsubsection{Umkehrabbbildung} +Sei $f$ eine umkehrbare lineare Abbildung $U\to V$ und $g\colon V\to U$. +die zugehörige Umkehrabbildung. +Für zwei Vektoren $u$ und $w$ in $U$ gibt es daher Vektoren $a=g(u)$ +und $b=g(w)$ in $V$ derart, dass $f(a)=u$ und $f(b)=w$. +Weil $f$ linear ist, folgt daraus $f(a+b)=u+w$ und $f(\lambda a)=\lambda a$ +für jedes $\lambda\in\Bbbk$. +Damit kann man jetzt +\begin{align*} +g(u+w)&=g(f(a)+f(b)) = g(f(a+b)) = a+b = g(u)+g(w) +\\ +g(\lambda u) &= g(\lambda f(a))=g(f(\lambda a)) = \lambda a = \lambda g(u) +\end{align*} +berechnen, was zeigt, dass auch $g$ eine lineare Abbildung ist. +Hat $f$ in geeignet gewählten Basen die Matrix $F$, dann hat die +Umkehrabbildung $g=f^{-1}$ die Matrix $G=F^{-1}$. +Da auch $f(g(y))=y$ gilt für jeden Vektor $y\in V$ folgt, dass $FF^{-1}=E$ +und $F^{-1}F=E$. + +\subsubsection{Kern und Bild} +Für die Eindeutigkeit der Lösung eines linearen Gleichungssytems +ist entscheidend, ob das zugehörige homogene Gleichungssystem $Ax=0$ +eine nichttriviale Lösung hat. +Seine Lösungmenge spielt also eine besondere Rolle, was rechtfertigt, +ihr einen Namen zu geben. + +\begin{definition} +\index{Kern}% +Ist $f$ eine lineare Abbildung $U\to V$, dann heisst die Menge +\[ +\ker f += +\{x\in U\;|\; f(x)=0\} +\] +der {\em Kern} oder {\em Nullraum} der linearen Abbildung $f$. +Ist $A \in M_{m\times n}(\Bbbk)$ Matrix, dann gehört dazu eine lineare +Abbildung $f\colon\Bbbk^n\to\Bbbk^m$. +Der Kern oder Nullraum der Matrix $A$ ist die Menge +\[ +\ker A += +\{ x\in\Bbbk^m \;|\; Ax=0\}. +\] +\end{definition} + +Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$ +\[ +\begin{aligned} +f(u+v)&=f(u) + f(v) = 0+0 = 0 &&\Rightarrow& u+v&\in\ker f\\ +f(\lambda u)&=\lambda f(u) = \lambda\cdot 0=0&&\Rightarrow& \lambda u&\in\ker f +\end{aligned} +\] +gilt. + +Ob ein Gleichungssystem $Ax=b$ überhaupt eine Lösung hat, hängt davon, +ob der Vektor $b$ als Bild der durch $A$ beschriebenen linearen Abbildung +$\Bbbk^n \to \Bbbk^m$ enthalten ist. +Wir definieren daher das Bild einer linearen Abbildung oder Matrix. + +\begin{definition} +Ist $f\colon V\to U$ eine lineare Abbildung dann ist das Bild von $f$ +der Unterraum +\[ +\operatorname{im}f = \{ f(v)\;|\;v\in V\} \subset U +\] +von $U$. +Das Bild einer $m\times n$-Matrix $A$ ist die Menge +\[ +\operatorname{im}A = \{ Av \;|\; v\in\Bbbk^n\} \subset \Bbbk^m. +\] +\end{definition} + +Zwei Vektoren $a,b\in\operatorname{im} f$ haben Urbilder $u,w\in V$ mit +$f(u)=a$ und $f(w)=b$. +Für Summe und Multiplikation mit Skalaren folgt +\[ +\begin{aligned} +a+b&= f(u)+f(v)=f(u+v) &&\Rightarrow a+b\in\operatorname{im}f\\ +\lambda a&=\lambda f(u) = f(\lambda u) &&\Rightarrow \lambda a&\in\operatorname{im}f, +\end{aligned} +\] +also ist auch das Bild $\operatorname{im}f$ ein Unterraum von $U$. +Das Bild der Matrix $A$ ist der Unterraum +\[ +\{ x_1f(b_1) + \dots x_n f(b_n) | x_i\in\Bbbk\} += +\langle f(b_1),\dots,f(b_n)\rangle += +\langle a_1,\dots,a_n\rangle +\] +von $\Bbbk^m$, aufgespannt von den Spaltenvektoren $a_i$ von $A$. + +\subsubsection{Rang und Defekt} +Die Dimensionen von Bild und Kern sind wichtige Kennzahlen einer Matrix. +\begin{definition} +Sei $A$ eine Matrix $A\in M_{m\times n}(\Bbbk)$. +Der {\em Rang} der Matrix $A$ ist die Dimension des Bildraumes von $A$: +$\operatorname{rank}A=\dim\operatorname{im} A$. +\index{Rang einer Matrix}% +Der {\em Defekt} der Matrix $A$ ist die Dimension des Kernes von $A$: +$\operatorname{def}A=\dim\ker A$. +\index{Defekt einer Matrix}% +\end{definition} + +Da der Kern mit Hilfe des Gauss-Algorithmus bestimmt werden kann, +können Rang und Defekt aus dem Schlusstableau +eines homogenen Gleichungssystems mit $A$ als Koeffizientenmatrix +abgelesen werden. + +\begin{satz} +Ist $A\in M_{m\times n}(\Bbbk)$ eine $m\times n$-Matrix, +dann gilt +\[ +\operatorname{rank}A += +n-\operatorname{def}A. +\] +\end{satz} + +\subsubsection{Quotient} +TODO: $\operatorname{im} A \simeq \Bbbk^m/\ker A$ diff --git a/buch/chapters/10-vektorenmatrizen/ringe.tex b/buch/chapters/10-vektorenmatrizen/ringe.tex index f35c490..21b29c2 100644 --- a/buch/chapters/10-vektorenmatrizen/ringe.tex +++ b/buch/chapters/10-vektorenmatrizen/ringe.tex @@ -3,6 +3,364 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\section{Ringe und Moduln -\label{buch:grundlagen:section:ringe}} -\rhead{Ringe} +\subsection{Ringe und Moduln +\label{buch:grundlagen:subsection:ringe}} +Die ganzen Zahlen haben ausser der Addition mit neutralem Element $0$ +auch noch eine Multiplikation mit dem neutralen Element $1$. +Die Multiplikation ist aber nicht immer invertierbar und zwar +nicht nur für $0$. +Eine ähnliche Situation haben wir bei $M_n(\Bbbk)$ angetroffen. +$M_n(\Bbbk)$ ist eine zunächst eine Gruppe bezüglich der Addition, +hat aber auch noch eine Multiplikation, die nicht immer umkehrbar ist. +Diese Art von Struktur nennt man einen Ring. + +\subsubsection{Definition eines Rings} + +\begin{definition} +\index{Ring}% +Eine Menge $R$ mit einer additiven Operation $+$ mit neutralem Element +$0$ und einer multiplikativ geschriebenen Operation $\cdot$ heisst ein +{\em Ring}, wenn folgendes gilt. +\begin{enumerate} +\item +$R$ ist eine Gruppe bezüglich der Addition. +\item +$R\setminus\{0\}$ ist eine Halbgruppe. +\item +Es gelten die {\em Distributivgesetze} +\[ +a(b+c)=ab+ac +\qquad\text{und}\qquad +(a+b)c=ac+bc +\] +für beliebige Elemente $a,b,c\in R$. +\index{Distributivgesetz}% +\end{enumerate} +\end{definition} + +Die Distributivgesetze stellen sicher, dass man in $R$ beliebig +ausmultiplizieren kann. +Man kann also so rechnen kann, wie man sich das gewohnt ist. +Es stellt auch sicher, dass die Multiplikation mit $0$ immer $0$ +ergibt, denn es ist +\[ +r0 = r(a-a) = ra-ra=0. +\] + +Man beachte, dass weder verlangt wurde, dass die Multiplikation +ein neutrales Element hat oder kommutativ ist. +Der Ring $\mathbb{Z}$ erfüllt beide Bedingungen. +Die Beispiele weiter unten werden zeigen, dass es auch Ringe gibt, +in denen die Multiplikation nicht kommutativ ist, die Multiplikation +kein neutrales Element hat oder beides. + +\begin{definition} +\index{Ring mit Eins}% +Ein Ring $R$ heisst ein Ring mit Eins, wenn die Multiplikation ein +neutrales Element hat. +\end{definition} + +\begin{definition} +\index{Ring!kommutativ}% +\index{kommutativer Ring}% +Ein Ring $R$ heisst kommutativ, wenn die Multiplikation kommutativ +ist. +\end{definition} + +\subsubsection{Beispiele von Ringen} + +\begin{beispiel} +Alle Zahlenkörper aus Kapitel~\ref{buch:chapter:zahlen} sind kommutative +Ringe mit Eins. +\end{beispiel} + +\begin{beispiel} +Die Menge $c(\mathbb{Z})$ der Folgen $(a_n)_{n\in\mathbb{N}}$ mit +Folgengliedern in $\mathbb{Z}$ wird eine Ring, wenn man die Addition +und Multiplikation elementweise definiert, also +\begin{align*} +&\text{Addition:} +& +a+b&\text{\;ist die Folge mit Folgengliedern}& +(a+b)_n &= a_nb_n \quad\text{für alle $n\in\mathbb{N}$} +\\ +&\text{Multiplikation:} +& +a\cdot b&\text{\;ist die Folge mit Folgengliedern}& +(a\cdot b)_n &= a_nb_n \quad\text{für alle $n\in\mathbb{N}$} +\end{align*} +für $a,b\in c(\mathbb{Z})$. +Die Algebra ist kommutativ und hat die konstante Folge +$u_n = 1\;\forall n$ als Eins. + +Wir betrachten jetzt ein Unterring $c_0(\mathbb{Z})\subset c(\mathbb{Z})$ +bestehend aus den Folgen, die nur für endlich viele Folgenglieder von +$0$ verschieden sind. +Für eine Folge $a\in c_0(\mathbb{Z})$ gibt es eine Zahl $N$ derart, dass +$a_n=0$ für $n\ge N$. +Die konstante Folge $u_n=1$, die in $c(\mathbb{Z})$ erfüllt diese +Bedingung nicht, die Eins des Ringes $c(\mathbb{Z})$ ist also nicht in +$c_0(\mathbb{Z})$. +$c_0(\mathbb{Z})$ ist immer noch ein Ring, aber er hat kein Eins. +\end{beispiel} + +\begin{beispiel} +\begin{figure} +\centering +\includegraphics{chapters/10-vektorenmatrizen/images/gausszahlen.pdf} +\caption{Der Ring der ganzen Gausschen Zahlen besteht aus den ganzahligen +Gitterpunkten in der Gausschen Zahlenebene +\label{buch:vektorenmatrizen:fig:ganzgauss}} +\end{figure} +Die Menge +\[ +\mathbb{Z} + i\mathbb{Z} += +\{a+bi\;|\; a,b\in\mathbb{Z}\} += +\mathbb{Z}[i] +\subset +\mathbb{C} +\] +ist eine Teilmenge von $\mathbb{C}$ und erbt natürlich die +arithmetischen Operationen. +Die Summe zweier solcher Zahlen $a+bi\in\mathbb{Z}[i]$ und +$c+di\in\mathbb{Z}[i]$ ist +$(a+bi)+(c+di)=(a+c) + (b+d)i\in \mathbb{Z}[i]$, weil $a+c\in\mathbb{Z}$ +und $b+d\in\mathbb{Z}$ ganze Zahlen sind. +Ebenso ist das Produkt dieser Zahlen +\( +(a+bi)(c+di) += +(ac-bd) + (ad+bc)i +\in \mathbb{Z}[i] +\) +weil Realteil $ac-bd\in\mathbb{Z}$ und der Imaginärteil $ad+bc\in\mathbb{Z}$ +ganze Zahlen sind. +Die Menge $\mathbb{Z}[i]$ ist also ein kommutative Ring mit Eins, er +heisst der Ring der ganzen {\em Gaussschen Zahlen}. +\index{Gausssche Zahlen}% +\end{beispiel} + +\begin{beispiel} +Die Menge der Matrizen $M_n(\mathbb{Z})$ ist ein Ring mit Eins. +Für $n>1$ ist er nicht kommutativ. +Der Ring $M_2(\mathbb{Z})$ enthält den Teilring +\[ +G += +\biggl\{ +\begin{pmatrix} +a&-b\\b&a +\end{pmatrix} +\;\bigg|\; +a,b\in\mathbb{Z} +\biggr\} += +\mathbb{Z}+ \mathbb{Z}J +\subset +M_2(\mathbb{Z}). +\] +Da die Matrix $J$ die Relation $J^2=-E$ erfüllt, ist der Ring $G$ +nichts anderes als der Ring der ganzen Gaussschen Zahlen. +Der Ring $\mathbb{Z}[i]$ ist also ein Unterring des Matrizenrings +$M_2(\mathbb{Z})$. +\end{beispiel} + +\subsubsection{Einheiten} +In einem Ring mit Eins sind normalerweise nicht alle von $0$ verschiedenen +Elemente intertierbar. +Die Menge der von $0$ verschiedenen Elemente in $R$ wir mit $R^*$ +bezeichnet. +\index{$R^*$}% +Die Menge der invertierbaren Elemente verdient einen besonderen Namen. + +\begin{definition} +Ist $R$ ein Ring mit Eins, dann heissen die Elemente von +\[ +U(R) = \{ r\in R \;|\; \text{$r$ in $R$ invertierbar}\}. +\] +die {\em Einheiten} von $R$. +\index{Einheit}% +\end{definition} + +\begin{satz} +$U(R)$ ist eine Gruppe, die sogenannte {\em Einheitengruppe}. +\index{Einheitengruppe}% +\end{satz} + +\begin{beispiel} +Die Menge $M_2(\mathbb{Z})$ ist ein Ring mit Eins, die Einheitengruppe +besteht aus den invertierbaren $2\times 2$-Matrizen. +Aus der Formel für +\[ +\begin{pmatrix} +a&b\\ +c&d +\end{pmatrix}^{-1} += +\frac{1}{ad-bc}\begin{pmatrix} +d&-b\\ +-c&a +\end{pmatrix} +\] +zeigt, dass $U(M_2(\mathbb{Z})) = \operatorname{SL}_2(\mathbb{Z})$. +\end{beispiel} + +\begin{beispiel} +Die Einheitengruppe von $M_n(\Bbbk)$ ist die allgemeine lineare Gruppe +$U(M_n(\Bbbk))=\operatorname{GL}_n(\Bbbk)$. +\end{beispiel} + +\subsubsection{Nullteiler} +Ein möglicher Grund, warum ein Element $r\in R$ nicht invertierbar +ist, kann sein, dass es ein Element $s\in R$ gibt mit $rs=0$. +Wäre nämlich $t$ ein inverses Element, dann wäre $0=t0 = t(rs) = (tr)s=s$. + +\begin{definition} +Ein Element $r\in R^*$ heisst ein {\em Nullteiler} in $R$, +wenn es ein $s\in R^*$ gibt mit $rs=0$ +Ein Ring ohne Nullteiler heisst {\em nullteilerfrei}. +\end{definition} + +In $\mathbb{R}$ ist man sich gewohnt zu argumentieren, dass wenn ein +Produkt $ab=0$ ist, dann muss einer der Faktoren $a=0$ oder $b=0$ sein. +Dieses Argument funktioniert nur, weil $\mathbb{R}$ ein nullteilerfreier +Ring ist. +In $M_2(\mathbb{R})$ ist dies nicht mehr möglich. +Die beiden Matrizen +\[ +A=\begin{pmatrix} +1&0\\0&0 +\end{pmatrix} +,\qquad +B=\begin{pmatrix} +0&0\\0&1 +\end{pmatrix} +\qquad\Rightarrow\qquad +AB=0 +\] +sind Nullteiler in $M_2(\mathbb{Z})$. + +\subsubsection{Homomorphismus} +Eine Abbildung zwischen Ringen muss die algebraische Struktur respektieren, +wenn sich damit Eigenschaften vom einen Ring auf den anderen transportieren +lassen sollen. + +\begin{definition} +Eine Abbildung $\varphi:R \to S$ zwischen Ringen heisst ein +{\em Homomorphismus} +\index{Homomorphismus}% +oder {\em Ringhomomorphismus}, +\index{Ringhomomorphismus}% +wenn $\varphi$ ein Gruppenhomomorphismus der additiven Gruppen der Ringe +ist und ausserdem gilt +\[ +\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2). +\] +Der Kern ist die Menge +\[ +\ker\varphi = \{ r\in R\;|\; \varphi(r)=0\} +\] +\index{Kern}% +\end{definition} + +Wieder hat der Kern zusätzliche Eigenschaften. +Er ist natürlich bezüglich der additiven Struktur des Ringes ein +Normalteiler, aber weil die additive Gruppe ja abelsch ist, ist das +keine wirkliche Einschränkung. +Für ein beliebiges Element $r\in R$ und $k\in \ker\varphi$ gilt +\begin{align*} +\varphi(kr) &= \varphi(k)\varphi(r) = 0\cdot\varphi(r) = 0 +\\ +\varphi(rk) &= \varphi(r)\varphi(k) = \varphi(r)\cdot 0 = 0. +\end{align*} +Für den Kern gilt also, dass $\ker\varphi\cdot R\subset \ker\varphi$ +und $R\cdot\ker\varphi\subset\ker\varphi$. + +\subsubsection{Ideale} +\begin{figure} +\centering +\includegraphics{chapters/10-vektorenmatrizen/images/ideale.pdf} +\caption{Ideale im Ring der ganzen Gaussschen Zahlen $\mathbb{Z}[i]$. +Für jedes Element $r\in \mathbb{Z}[i]$ ist die Menge $r\mathbb{Z}[i]$ +ein ein Ideal in $\mathbb{Z}[i]$. +Links das Ideal $(1+2i)\mathbb{Z}[i]$ (blau), rechts das Ideal +$(1+i)\mathbb{Z}[i]$ (rot). +\label{buch:vektorenmatrizen:fig:ideale}} +\end{figure} +Bei der Betrachtung der additiven Gruppe des Ringes $\mathbb{Z}$ der +ganzen Zahlen wurde bereits die Untergruppe $n\mathbb{Z}$ diskutiert +und die Faktorgruppe $\mathbb{Z}/n\mathbb{Z}$ der Reste konstruiert. +Reste können aber auch multipliziert werden, es muss also auch möglich +sein, der Faktorgruppe eine multiplikative Struktur zu verpassen. + +Sei jetzt also $I\subset R$ ein Unterring. +Die Faktorgruppe $R/I$ hat bereits die additive Struktur, es muss +aber auch die Multiplikation definiert werden. +Die Elemente $r_1+I$ und $r_2+I$ der Faktorgruppe $R/I$ haben das +Produkt +\[ +(r_1+I)(r_2+I) += +r_1r_2 + r_1I + Ir_2 + II. +\] +Dies stimmt nur dann mit $r_1r_2+I$ überein, wenn $r_1I\subset I$ und +$r_2I\subset I$ ist. + +\begin{definition} +Ein Unterring $I\subset R$ heisst ein {\em Ideal}, wenn für jedes $r\in R$ gilt +$rI\subset I$ und $Ir\subset I$ gilt. +\index{Ideal}% +Die Faktorgruppe $R/I$ erhält eine natürliche Ringstruktur, $R/I$ +heisst der {\em Quotientenring}. +\index{Quotientenring}% +\end{definition} + +\begin{beispiel} +Die Menge $n\mathbb{Z}\subset\mathbb{Z}$ besteht aus den durch $n$ teilbaren +Zahlen. +Multipliziert man durch $n$ teilbare Zahlen mit einer ganzen Zahl, +bleiben sie durch $n$ teilbar, $n\mathbb{Z}$ ist also ein Ideal in +$\mathbb{Z}$. +Der Quotientenring ist der Ring der Reste bei Teilung durch $n$, +er wird in +Kapitel~\ref{buch:chapter:endliche-koerper} +im Detail untersucht. +\end{beispiel} + +Ein Ideal $I\subset R$ drückt als die Idee ``gemeinsamer Faktoren'' +auf algebraische Weise aus und der Quotientenring $R/I$ beschreibt +das, was übrig bleibt, wenn man diese Faktoren ignoriert. + +\begin{beispiel} +In Abbildung~\ref{buch:vektorenmatrizen:fig:ideale} sind zwei +Ideale im Ring der ganzen Gaussschen Zahlen dargestellt. +Die blauen Punkte sind $I_1=(1+2i)\mathbb{Z}$ und die roten Punkte sind +$I_2=(1+i)\mathbb{Z}$. +Die Faktorgruppen $R/I_1$ und $R/I_2$ fassen jeweils Punkte, die sich +um ein Element von $I_1$ bzw.~$I_2$ unterscheiden, zusammen. + +Im Falle von $I_2$ gibt es nur zwei Arten von Punkten, nämlich +die roten und die schwarzen, der Quotientenring hat +daher nur zwei Elemente, $R/I_2 = \{0+I_2,1+I_2\}$. +Wegen $1+1=0$ in diesem Quotientenring, ist $R/I_2=\mathbb{Z}/2\mathbb{Z}$. + +Im Falle von $I_1$ gibt es fünf verschiedene Punkte, als Menge ist +\[ +R/I_1 += +\{ +0+I_1, +1+I_1, +2+I_1, +3+I_1, +4+I_1 +\}. +\] +Die Rechenregeln sind also dieselben wie im Ring $\mathbb{Z}/5\mathbb{Z}$. +In gewisser Weise verhält sich die Zahl $1+2i$ in den ganzen +Gaussschen Zahlen bezüglich Teilbarkeit ähnlich wie die Zahl $5$ in den +ganzen Zahlen. +\end{beispiel} + diff --git a/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex b/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex new file mode 100644 index 0000000..d951221 --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/skalarprodukt.tex @@ -0,0 +1,813 @@ +% +% skalarprodukt.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschulen +% +\section{Skalarprodukt +\label{buch:section:skalarprodukt}} +\rhead{Skalarprodukt} +In der bisher dargestellten Form ist die lineare Algebra nicht +in der Lage, unsere vom Abstandsbegriff dominierte Geometrie adäquat +darzustellen. +Als zusätzliches Hilfsmittel wird eine Methode benötigt, Längen +und Winkel auszudrücken. +Das Skalarprodukt passt in den algebraischen Rahmen der +linearen Algebra, bringt aber auch einen Abstandsbegriff hervor, +der genau der geometrischen Intuition entspricht. + +\subsection{Bilinearformen und Skalarprodukte +\label{buch:subsection:bilinearformen}} +Damit man mit einem Skalarprodukt rechnen kann wie mit jedem anderen +Produkt, müssen man auf beiden Seiten des Zeichesn ausmultiplizieren können: +\begin{align*} +(\lambda x_1 + \mu x_2)\cdot y &= \lambda x_1\cdot y + \mu x_2\cdot y\\ +x\cdot (\lambda y_1 + \mu y_2) &= \lambda x\cdot y_1 + \mu x\cdot y_2. +\end{align*} +Man kann dies interpretieren als Linearität der Abbildungen +$x\mapsto x\cdot y$ und $y\mapsto x\cdot y$. +Dies wird Bilinearität genannt und wie folgt definiert. + +% XXX Bilinearität +\begin{definition} +Seien $U,V,W$ $\Bbbk$-Vektorräume. +Eine Abbildung $f\colon U\times V\to W$ heisst {\em bilinear}, +\index{bilinear}% +wenn die partiellen Abbildungen $U\to W:x\mapsto f(x,y_0)$ und +$V\to W:y\mapsto f(x_0,y)$ +linear sind für alle $x_0\in U$ und $y_0\in V$, d.~h. +\begin{align*} +f(\lambda x_1 + \mu x_2,y) &= \lambda f(x_1,y) + \mu f(x_2,y) +\\ +f(x,\lambda y_1 + \mu y_2) &= \lambda f(x,y_1) + \mu f(x,y_2) +\end{align*} +Eine bilineare Funktion mit Werten in $\Bbbk$ heisst auch {\em Bilinearform}. +\index{Bilinearform}% +\end{definition} + +\subsubsection{Symmetrische bilineare Funktionen} +Das Skalarprodukt hängt nicht von der Reihenfolge der Faktoren ab. +In Frage dafür kommen daher nur Bilnearformen $f\colon V\times V\to\Bbbk$, +die zusätzlich $f(x,y)=f(y,x)$ erfüllen. +Solche Bilinearformen heissen symmetrisch. +Für eine symmetrische Bilinearform gilt die binomische Formel +\begin{align*} +f(x+y,x+y) +&= +f(x,x+y)+f(y,x+y) += +f(x,x)+f(x,y)+f(y,x)+f(y,y) +\\ +&= +f(x,x)+2f(x,y)+f(y,y) +\end{align*} +wegen $f(x,y)=f(y,x)$. + +\subsubsection{Positiv definite Bilinearformen und Skalarprodukt} +Bilinearität alleine genügt nicht, um einen Vektorraum mit einem +nützlichen Abstandsbegriff auszustatten. +Dazu müssen die berechneten Abstände vergleichbar sein, es muss also +eine Ordnungsrelation definiert sein, wie wir sie nur in $\mathbb{R}$ +kennen. +Wir sind daher gezwungen uns auf $\mathbb{R}$- oder +$\mathbb{Q}$-Vektorräume zu beschränken. + +Man lernt in der Vektorgeometrie, dass sich mit einer Bilinearform +$f\colon V\times V\to\mathbb{R}$ +die Länge eines Vektors $x$ definieren lässt, indem man $\|x\|^2 = f(x,x)$ +setzt. +Ausserdem muss $f(x,x)\ge 0$ sein für alle $x$, was die Bilinearität +allein nicht garantieren kann. +Verschiedene Punkte in einem Vektorraum sollen in dem aus der Bilinearform +abgeleiteten Abstandsbegriff immer unterscheidbar sein. +Dazu muss jeder von $0$ verschiedene Vektor positive Länge haben. + +% XXX Positiv definite Form +\begin{definition} +Eine Bilinearform $f\colon V\times V\to\mathbb{R}$ +heisst {\em positiv definit}, wenn +\index{positiv definit}% +\[ +f(x,x) > 0\qquad\forall x\in V\setminus\{0\}. +\] +Das zugehörige {\em Skalarprodukt} wird $f(x,y)=\langle x,y\rangle$ +geschrieben. +\index{Skalarprodukt}% +Die {\em $l^2$-Norm} $\|x\|_2$ eines Vektors ist definiert durch +$\|x\|_2^2 = \langle x,x\rangle$. +\end{definition} + +\subsubsection{Dreiecksungleichung} +% XXX Dreiecksungleichung +Damit man sinnvoll über Abstände sprechen kann, muss die Norm +$\|\;\cdot\;\|_2$ der geometrischen Intuition folgen, die durch +die Dreiecksungleichung ausgedrückt wird. +In diesem Abschnitt soll gezeigt werden, dass die $l^2$-Norm +diese immer erfüllt. +Dazu sei $V$ ein $\mathbb{R}$-Vektorraum mit Skalarprodukt +$\langle\;,\;\rangle$. + +\begin{satz}[Cauchy-Schwarz-Ungleichung] +Für $x,y\in V$ gilt +\[ +|\langle x,y\rangle | +\le +\| x\|_2\cdot \|y\|_2 +\] +mit Gleichheit genau dann, wenn $x$ und $y$ linear abhängig sind. +\end{satz} + +\begin{proof}[Beweis] +Wir die Norm von $z=x-ty$: +\begin{align} +\|x-ty\|_2^2 +&= +\|x\|_2^2 -2t\langle x,y\rangle +t^2\|y\|_2^2 \ge 0. +\notag +\end{align} +Sie nimmt den kleinsten Wert genau dann an, wenn es ein $t$ gibt derart, +dass $x=ty$. +Die rechte Seite ist ein quadratischer Ausdruck in $t$, +er hat sein Minimum bei +\begin{align*} +t&=-\frac{-2\langle x,y\rangle}{2\|y\|_2^2} +&&\Rightarrow& +\biggl\| +x - \frac{\langle x,y\rangle}{\|y\|_2^2}y +\biggr\|_2^2 +&= +\|x\|_2^2 +- +2\frac{(\langle x,y\rangle)^2}{\|y\|_2^2} ++ +\frac{(\langle x,y\rangle)^2}{\|y\|_2^4} \|y\|_2^2 +\\ +&&&& +&= +\|x\|_2^2 +- +\frac{(\langle x,y\rangle)^2}{\|y\|_2^2} += +\frac{ +\|x\|_2^2\cdot\|y\|_2^2 - (\langle x,y\rangle)^2 +}{ +\|y\|_2^2 +} +\ge 0 +\intertext{Es folgt} +&&&\Rightarrow& +\|x\|_2^2\cdot\|y\|_2^2 - (\langle x,y\rangle)^2 &\ge 0 +\\ +&&&\Rightarrow& +\|x\|_2\cdot\|y\|_2 &\ge |\langle x,y\rangle | +\end{align*} +mit Gleichheit genau dann, wenn es ein $t$ gibt mit $x=ty$. +\end{proof} + +\begin{satz}[Dreiecksungleichung] +Für $x,y\in V$ ist +\[ +\| x + y \|_2 \le \|x\|_2 + \|y\|_2 +\] +mit Gleichheit genau dann, wenn $x=ty$ ist für ein $t\ge 0$. +\end{satz} + +\begin{proof}[Beweis] +\begin{align*} +\|x+y\|_2^2 +&= +\langle x+y,x+y\rangle += +\langle x,x\rangle ++ +2\langle x,y\rangle ++ +\langle y,y\rangle +\\ +&= +\|x\|_2^2 ++ +2\langle x,y\rangle ++ +\|y\|_2^2 += +\|x\|_2^2 + 2\langle x,y\rangle + \|y\|_2^2 +\le +\|x\|_2^2 + 2\|x\|_2\cdot\|y\|_2 + \|y\|_2^2 +\\ +&= +(\|x\|_2 + \|y\|_2)^2 +\\ +\|x\|_2 + \|y\|_2 +&\le \|x\|_2 + \|y\|_2, +\end{align*} +Gleichheit tritt genau dann ein, wenn +$\langle x,y\rangle=\|x\|_2\cdot \|y\|_2$. +Dies tritt genau dann ein, wenn die beiden Vektoren linear abhängig sind. +\end{proof} + +\subsubsection{Polarformel} +% XXX Polarformel +Auf den ersten Blick scheint die Norm $\|x\|_2$ weniger Information +zu beinhalten, als die symmetrische Bilinearform, aus der sie +hervorgegangen ist. +Dem ist aber nicht so, denn die Bilinearform lässt sich aus der +Norm zurückgewinnen. +Dies ist der Inhalt der sogenannte Polarformel. + +\begin{satz}[Polarformel] +Ist $\|\cdot\|_2$ eine Norm, die aus einer symmetrischen Bilinearform +$\langle\;,\;\rangle$ hervorgegangen ist, dann kann die Bilinearform +mit Hilfe der Formel +\begin{equation} +\langle x,y\rangle += +\frac12( +\|x+y\|_2^2 +- +\|x\|_2^2 +- +\|y\|_2^2 +) +\label{buch:grundlagen:eqn:polarformel} +\end{equation} +für $x,y\in V$ wiedergewonnen werden. +\end{satz} + +\begin{proof}[Beweis] +Die binomischen Formel +\begin{align*} +\|x+y\|_2^2 +&= +\|x\|_2^2 + 2\langle x,y\rangle + \|y\|_2^2 +\intertext{kann nach $\langle x,y\rangle$ aufgelöst werden, was} +\langle x,y\rangle &= \frac12 ( +\|x+y\|_2^2 - \|x\|_2^2 - \|y\|_2^2 +) +\end{align*} +ergibt. +Damit ist die +Polarformel~\eqref{buch:grundlagen:eqn:polarformel} +bewiesen. +\end{proof} + +\subsubsection{Komplexe Vektorräume und Sesquilinearformen} +% XXX Sesquilinearform +Eine Bilinearform auf einem komplexen Vektorraum führt nicht +auf eine Grösse, die sich als Norm eignet. +Selbst wenn $\langle x,x\rangle >0$ ist, +\[ +\langle ix,iy\rangle = i^2 \langle x,y\rangle += +-\langle x,y\rangle < 0. +\] +Dies kann verhindert werden, wenn verlangt wird, dass der Faktor +$i$ im ersten Faktor der Bilinearform als $-i$ aus der Bilinearform +herausgenommen werden muss. + +\begin{definition} +Seien $U,V,W$ komplexe Vektorräume. +Eine Abbildung $f\colon U\times V\to W$ heisst +{\em sesquilinear}\footnote{Das lateinische Wort {\em sesqui} bedeutet +eineinhalb, eine Sesquilinearform ist also eine Form, die in einem +Faktor (dem zweiten) linear ist, und im anderen nur halb linear.} +\index{sesquilinear} +wenn gilt +\begin{align*} +f(\lambda x_1+\mu x_2,y) &= \overline{\lambda}f(x_1,y) + \overline{\mu}f(x_2,y) +\\ +f(x,\lambda y_1+\mu y_2) &= \lambda f(x,y_1) + \mu f(x,y_2) +\end{align*} +\end{definition} + +Für die Norm $\|x\|_2^2=\langle x,x\rangle$ bedeutet dies jetzt +\[ +\|\lambda x\|_2^2 += +\langle \lambda x,\lambda x\rangle += +\overline{\lambda}\lambda \langle x,x\rangle += +|\lambda|^2 \|x\|_2^2 +\qquad\Rightarrow\qquad +\|\lambda x\|_2 = |\lambda|\, \|x\|_2. +\] + +\subsection{Orthognormalbasis +\label{buch:subsection:orthonormalbasis}} +\index{orthonormierte Basis}% + +\subsubsection{Gram-Matrix} +Sei $V$ ein Vektorraum mit einem Skalarprodukt und $\{b_1,\dots,b_n\}$ eine +Basis von $V$. +Wie kann man das Skalarprodukt aus den Koordinaten $\xi_i$ und $\eta_i$ +der Vektoren +\[ +x = \sum_{i=1}^n \xi_i b_i, +\quad\text{und}\quad +y = \sum_{i=1}^n \eta_i b_i +\] +berechnen? +Setzt man $x$ und $y$ in das Skalarprodukt ein, erhält man +\begin{align*} +\langle x,y\rangle +&= +\biggl\langle +\sum_{i=1}^n \xi_i b_i, +\sum_{j=1}^n \eta_j b_j +\biggr\rangle += +\sum_{i,j=1}^n \xi_i\eta_j \langle b_i,b_j\rangle. +\end{align*} +Die Komponente $g_{ij}=\langle b_i,b_j\rangle$ bilden die sogenannte +Gram-Matrix $G$. +Mit ihr kann das Skalarprodukt auch in Vektorform geschrieben werden +als $\langle x,y\rangle = \xi^t G\eta$. + +\subsubsection{Orthonormalbasis} +Eine Basis $\{a_1,\dots,a_n\}$ aus orthogonalen Einheitsvektoren, +also mit +$ +\langle a_i,a_j\rangle=\delta_{ij} +$ +heisst {\em Orthonormalbasis}. +In einer Orthonormalbasis ist die Bestimmung der Koordinaten eines +beliebigen Vektors besonders einfach, ist nämlich +\begin{equation} +v=\sum_{i=1}^n \langle v,a_i\rangle a_i. +\label{buch:grundlagen:eqn:koordinaten-in-orthonormalbasis} +\end{equation} +Die Gram-Matrix einer Orthonormalbasis ist die Einheitsmatrix. + +\subsubsection{Gram-Schmidt-Orthonormalisierung} +Mit Hilfe des Gram-Schmidtschen Orthonormalisierungsprozesses kann aus +einer beliebige Basis $\{a_1,a_2,\dots,a_n\}\subset V$ eines Vektorraums +mit einem SKalarprodukt eine orthonormierte Basis +$\{b_1,b_2,\dots,b_n\}$ gefunden werden derart, dass für alle $k$ +$\langle b_1,\dots,b_k\rangle = \langle a_1,\dots ,a_k\rangle$. +\index{Gram-Schmidt-Orthonormalisierung}% +Der Zusammenhang zwischen den Basisvektoren $b_i$ und $a_i$ ist +gegeben durch +\begin{align*} +b_1&=\frac{a_1}{\|a_1\|_2} +\\ +b_2&=\frac{a_2-b_1\langle b_1,a_2\rangle}{\|a_2-b_1\langle b_1,a_2\rangle\|_2} +\\ +b_3&=\frac{a_3-b_1\langle b_1,a_3\rangle-b_2\langle b_2,a_3\rangle}{\|a_3-b_1\langle b_1,a_3\rangle-b_2\langle b_2,a_3\rangle\|_2} +\\ +&\phantom{n}\vdots\\ +b_n +&= +\frac{ +a_n-b_1\langle b_1,a_n\rangle-b_2\langle b_2,a_n\rangle +-\dots-b_{n-1}\langle b_{n-1},a_n\rangle +}{ +\| +a_n-b_1\langle b_1,a_n\rangle-b_2\langle b_2,a_n\rangle +-\dots-b_{n-1}\langle b_{n-1},a_n\rangle +\|_2 +}. +\end{align*} +Die Gram-Matrix der Matrix $\{b_1,\dots,b_n\}$ ist die Einheitsmatrix. + +\subsubsection{Orthogonalisierung} +Der Normalisierungsschritt im Gram-Schmidt-Orthonormalisierungsprozess +ist nur möglich, wenn Quadratwurzeln unbeschränkt gezogen werden können. +Das ist in $\mathbb{R}$ möglich, nicht jedoch in $\mathbb{Q}$. +Es ist aber mit einer kleinen Anpassung auch über $\mathbb{Q}$ +immer noch möglich, aus einer Basis $\{a_1,\dots,a_n\}$ eine orthogonale +Basis zu konstruieren. +Man verwendet dazu die Formeln +\begin{align*} +b_1&=a_1 +\\ +b_2&=a_2-b_1\langle b_1,a_2\rangle +\\ +b_3&=a_3-b_1\langle b_1,a_3\rangle-b_2\langle b_2,a_3\rangle +\\ +&\phantom{n}\vdots\\ +b_n +&= +a_n-b_1\langle b_1,a_n\rangle-b_2\langle b_2,a_n\rangle +-\dots-b_{n-1}\langle b_{n-1},a_n\rangle. +\end{align*} +Die Basisvektoren $b_i$ sind orthogonal, aber $\|b_i\|_2$ kann auch +von $1$ abweichen. +Damit ist es zwar nicht mehr so einfach +wie in \eqref{buch:grundlagen:eqn:koordinaten-in-orthonormalbasis}, +einen Vektor in der Basis zu zerlegen. +Ein Vektor $v$ hat nämlich in der Basis $\{b_1,\dots,b_n\}$ die Zerlegung +\begin{equation} +v += +\sum_{i=1}^n +\frac{\langle b_i,v\rangle}{\|b_i\|_2^2} b_i, +\label{buch:grundlagen:eqn:orthogonal-basiszerlegung} +\end{equation} +Die Koordinaten bezüglich dieser Basis sind also +$\langle b_i,v\rangle/\|b_i\|_2^2$. + +Die Gram-Matrix einer Orthogonalen Basis ist immer noch diagonal, +auf der Diagonalen stehen die Normen der Basisvektoren. +Die Nenner in der Zerlegung +\eqref{buch:grundlagen:eqn:orthogonal-basiszerlegung} +sind die Einträge der inverse Matrix der Gram-Matrix. + +\subsubsection{Orthonormalbasen in komplexen Vektorräumen} +Die Gram-Matrix einer Basis $\{b_1,\dots,b_n\}$ in einem komplexen +Vektorraum hat die Eigenschaft +\[ +g_{ij} += +\langle b_i,b_j\rangle += +\overline{\langle b_j,b_i\rangle}, += +\overline{g}_{ji} +\quad 1\le i,j\le n. +\] +Sie ist nicht mehr symmetrisch, aber selbstadjungiert, gemäss +der folgenden Definition. + +\begin{definition} +\label{buch:grundlagen:definition:selstadjungiert} +Sei $A$ eine komplexe Matrix mit Einträgen $a_{ij}$, dann ist +$\overline{A}$ die Matrix mit komplex konjugierten Elementen +$\overline{a}_{ij}$. +Die {\em adjungierte} Matrix ist $A^*=\overline{A}^t$. +Eine Matrix heisst selbstadjungiert, wenn $A^*=A$. +\end{definition} + +\subsection{Symmetrische und selbstadjungierte Abbilungen +\label{buch:subsection:symmetrisch-und-selbstadjungiert}} +In Definition~\ref{buch:grundlagen:definition:selstadjungiert} +wurde der Begriff der selbstadjungierten Matrix basierend +eingeführt. +Als Eigenschaft einer Matrix ist diese Definition notwendigerweise +abhängig von der Wahl der Basis. +Es ist nicht unbedingt klar, dass derart definierte Eigenschaften +als von der Basis unabhängige Eigenschaften betrachtet werden können. +Ziel dieses Abschnitts ist, Eigenschaften wie Symmetrie oder +Selbstadjungiertheit auf basisunabhängige Eigenschaften von +linearen Abbildungen in einem Vektorraum $V$ mit Skalarprodukt +$\langle\;,\;\rangle$ zu verstehen. + +\subsubsection{Symmetrische Abbildungen} +Sei $f\colon V\to V$ eine lineare Abbildung. +In einer Basis $\{b_1,\dots,b_n\}\subset V$ wird $f$ durch eine +Matrix $A$ beschrieben. +Ist die Basis orthonormiert, dann kann man die Matrixelemente +mit $a_{ij}=\langle b_i,Ab_j\rangle$ berechnen. +Die Matrix ist symmetrisch, wenn +\[ +\langle b_i,Ab_j\rangle += +a_{ij} += +a_{ji} += +\langle b_j,Ab_i \rangle += +\langle Ab_i,b_j \rangle +\] +ist. +Daraus leitet sich jetzt die basisunabhängige Definition einer +symmetrischen Abbildung ab. + +\begin{definition} +Eine lineare Abbildung $f\colon V\to V$ heisst {\em symmetrisch}, wenn +$\langle x,Ay\rangle=\langle Ax,y\rangle$ gilt für beliebige +Vektoren $x,y\in V$. +\end{definition} + +Für $V=\mathbb{R}^n$ und das Skalarprodukt $\langle x,y\rangle=x^ty$ +erfüllt eine symmetrische Abbildung mit der Matrix $A$ die Gleichung +\[ +\left. +\begin{aligned} +\langle x,Ay\rangle +&= +x^tAy +\\ +\langle Ax,y\rangle +&= +(Ax)^ty=x^tA^ty +\end{aligned} +\right\} +\quad\Rightarrow\quad +x^tA^ty = x^tAy\quad\forall x,y\in\mathbb{R}^n, +\] +was gleichbedeutend ist mit $A^t=A$. +Der Begriff der symmetrischen Abbildung ist also eine natürliche +Verallgemeinerung des Begriffs der symmetrischen Matrix. + +\subsubsection{Selbstadjungierte Abbildungen} +In einem komplexen Vektorraum ist das Skalarprodukt nicht mehr bilinear +und symmetrisch, sondern sesquilinear und konjugiert symmetrisch. + +\begin{definition} +Eine lineare Abbildung $f\colon V\to V$ heisst {\em selbstadjungiert}, +wenn $\langle x,fy\rangle=\langle fx,y\rangle$ für alle $x,y\in\mathbb{C}$. +\end{definition} + +Im komplexen Vektorraum $\mathbb{C}^n$ ist das Standardskalarprodukt +definiert durch $\langle x,y\rangle = \overline{x}^ty$. + +\subsubsection{Die Adjungierte} +Die Werte der Skalarprodukte $\langle x, y\rangle$ für alle $x\in V$ +legen den Vektor $y$ fest. +Gäbe es nämlich einen zweiten Vektor $y'$ mit den gleichen Skalarprodukten, +also $\langle x,y\rangle = \langle x,y'\rangle$ für alle $x\in V$, +dann gilt wegen der Linearität $\langle x,y-y'\rangle=0$. +Wählt man $x=y-y'$, dann folgt +$0=\langle y-y',y-y'\rangle=\|y-y'\|_2$, also muss $y=y'$ sein. + +\begin{definition} +Sei $f\colon V\to V$ eine lineare Abbildung. +Die lineare Abbildung $f^*\colon V\to V$ definiert durch +\[ +\langle f^*x,y\rangle = \langle x,fy\rangle,\qquad x,y\in V +\] +heisst die {\em Adjungierte} von $f$. +\end{definition} + +Eine selbstadjungierte Abbildung ist also eine lineare Abbildung, +die mit ihrer Adjungierte übereinstimmt, als $f^* = f$. +In einer orthonormierten Basis $\{b_1,\dots,b_n\}$ hat die Abbildung +$f$ die Matrixelemente $a_{ij}=\langle b_i,fb_j\rangle$. +Die adjungierte Abbildung hat dann die Matrixelemente +\[ +\langle b_i,f^*b_j \rangle += +\overline{\langle f^*b_j,b_i\rangle} += +\overline{\langle b_j,fb_i\rangle} += +\overline{a_{ji}}, +\] +was mit der Definition von $A^*$ übereinstimmt. + +\subsection{Orthogonale und unitäre Matrizen +\label{buch:subsection:orthogonale-und-unitaere-matrizen}} +Von besonderer geometrischer Bedeutung sind lineare Abbildung, +die die Norm nicht verändern. +Aus der Polarformel~\eqref{buch:grundlagen:eqn:polarformel} +folgt dann, dass auch das Skalarprodukt erhalten ist, aus dem +Winkel berechnet werden können. +Abbildungen, die die Norm erhalten, sind daher auch winkeltreu. + +\begin{definition} +Eine lineare Abbildung $f\colon V\to V$ in einem reellen +Vektorraum mit heisst {\em orthogonal}, wenn +$\langle fx,fy\rangle = \langle x,y\rangle$ für alle +$x,y\in V$ gilt. +\end{definition} + +Die adjungierte einer orthogonalen Abbildung erfüllt +$\langle x,y\rangle = \langle fx,fy\rangle = \langle f^*f x, y\rangle$ +für alle $x,y\in V$, also muss $f^*f$ die identische Abbildung sein, +deren Matrix die Einheitsmatrix ist. +Die Matrix $O$ einer orthogonalen Abbildung erfüllt daher $O^tO=I$. + +Für einen komplexen Vektorraum erwarten wir grundsätzlich dasselbe. +Lineare Abbildungen, die die Norm erhalten, erhalten das komplexe +Skalarprodukt. +Auch in diesem Fall ist $f^*f$ die identische Abbildung, die zugehörigen +Matrixen $U$ erfüllen daher $U^*U=I$. + +\begin{definition} +Eine lineare Abbildung $f\colon V\to V$ eines komplexen Vektorraumes +$V$ mit Skalarprodukt heisst unitär, +wenn $\langle x,y\rangle = \langle fx,fy\rangle$ für alle Vektoren $x,y\in V$. +Eine Matrix heisst unitär, wenn $U^*U=I$. +\end{definition} + +Die Matrix einer unitären Abbildung in einer orthonormierten Basis ist unitär. + +% XXX Skalarprodukt und Lineare Abbildungen +% XXX Symmetrische Matrizen +% XXX Selbstadjungierte Matrizen + +\subsection{Orthogonale Unterräume +\label{buch:subsection:orthogonale-unterraeume}} +% XXX Invariante Unterräume +% XXX Kern und Bild orthogonaler Abbildungen + +\subsection{Andere Normen auf Vektorräumen +\label{buch:subsection:andere-normen}} +Das Skalarprodukt ist nicht die einzige Möglichkeit, eine Norm auf einem +Vektorraum zu definieren. +In diesem Abschnitt stellen wir einige weitere mögliche Normdefinitionen +zusammen. + +\subsubsection{$l^1$-Norm} +\begin{definition} +Die $l^1$-Norm in $V=\mathbb{R}^n$ oder $V=\mathbb{C}^n$ ist definiert durch +\[ +\| v\|_1 += +\sum_{i=1}^n |v_i| +\] +für $v\in V$. +\end{definition} + +Auch die $l^1$-Norm erfüllt die Dreiecksungleichung +\[ +\|x+y\|_1 += +\sum_{i=1}^n |x_i+y_i| +\le +\sum_{i=1} |x_i| + \sum_{i=1} |y_i| += +\|x\|_1 + \|y\|_1. +\] + +Die $l^1$-Norm kommt nicht von einem Skalarprodukt her. +Wenn es ein Skalarprodukt gäbe, welches auf diese Norm führt, dann +müsste +\[ +\langle x,y\rangle += +\frac12(\|x+y\|_1^2-\|x\|_1^2-\|y\|_1^2) +\] +sein. +Für die beiden Standardbasisvektoren $x=e_1$ und $y=e_2$ +bedeutet dies +\[ +\left . +\begin{aligned} +\|e_1\|_1 &= 2\\ +\|e_2\|_1 &= 2\\ +\|e_1\pm +e_2\|_1 &= 2\\ +\end{aligned} +\right\} +\quad\Rightarrow\quad +\langle e_1,\pm e_2\rangle += +\frac12( 2^2 - 1^2 - 1^2) +=1 +\] +Die Linearität des Skalarproduktes verlangt aber, dass +$1=\langle e_1,-e_2\rangle = -\langle e_1,e_2\rangle = -1$, +ein Widerspruch. + +\subsubsection{$l^\infty$-Norm} + + +\begin{definition} +Die $l^\infty$-Norm in $V=\mathbb{R}^n$ und $V=\mathbb{C}^n$ ist definiert +\[ +\|v\|_\infty += +\max_{i} |v_i|. +\] +Sie heisst auch die {\em Supremumnorm}. +\index{Supremumnorm}% +\end{definition} + +Auch diese Norm erfüllt die Dreiecksungleichung +\[ +\|x+y\|_\infty += +\max_i |x_i+y_i| +\le +\max_i (|x_i| + |y_i|) +\le +\max_i |x_i| + \max_i |y_i| += +\|x\|_\infty + \|y\|_\infty. +\] +Auch diese Norm kann nicht von einem Skalarprodukt herkommen, ein +Gegenbeispiel können wir wieder mit den ersten beiden Standardbasisvektoren +konstruieren. +Es ist +\[ +\left. +\begin{aligned} +\|e_1\|_\infty &= 1\\ +\|e_2\|_\infty &= 1\\ +\|e_1\pm e_2\|_\infty &= 1 +\end{aligned} +\right\} +\qquad\Rightarrow\qquad +\langle e_1,\pm e_2\rangle += +\frac12(\|e_1\pm e_2\|_\infty^2 - \|e_1\|_\infty^2 - \|e_2\|_\infty^2) += +\frac12(1-1-1) = -\frac12. +\] +Es folgt wieder +\( +-\frac12 += +\langle e_1,-e_2\rangle += +-\langle e_1,e_2\rangle += +\frac12, +\) +ein Widerspruch. + +\subsubsection{Operatornorm} +Der Vektorraum der linearen Abbildungen $f\colon U\to V$ kann mit einer +Norm ausgestattet werden, wenn $U$ und $V$ jeweils eine Norm haben. + +\begin{definition} +Seien $U$ und $V$ Vektorräume über $\mathbb{R}$ oder $\mathbb{C}$ und +$f\colon U\to V$ eine lineare Abbildung. +Die {\em Operatorname} der linearen Abbildung ist +\[ +\|f\| += +\sup_{x\in U\wedge \|x\|\le 1} \|fx\|. +\] +\end{definition} + +Nach Definition gilt $\|fx\| \le \|f\|\cdot \|x\|$ für alle $x\in U$. +Die in den Vektorräumen $U$ und $V$ verwendeten Normen haben einen +grossen Einfluss auf die Operatornorm, wie die beiden folgenden +Beispiele zeigen. + +\begin{beispiel} +Sei $V$ ein komplexer Vektorraum mit einem Skalarprodukt und $y\in V$ ein +Vektor. +$y$ definiert die lineare Abbildung +\[ +l_y +\colon +V\to \mathbb{C}: x\mapsto \langle y,x\rangle. +\] +Zur Berechnung der Operatorname von $l_y$ +\[ +|l_y(x)|^2 += +|\langle y,x\rangle|^2 +\le +\|y\|_2^2\cdot \|x\|_2^2 +\] +mit Gleichheit genau dann, wenn $x$ und $y$ linear abhängig sind. +Dies bedeutet, dass +$\|l_y\|=\|y\|$, die Operatorname von $l_y$ stimmt mit der Norm von $y$ +überein. +\end{beispiel} + +\begin{beispiel} +Sei $V=\mathbb{C}^n$. +Dann definiert $y\in V$ eine Linearform +\[ +l_y +\colon +V\to \mathbb C +: +x\mapsto y^tx. +\] +Wir suchen die Operatornorm von $l_y$, wenn $V$ mit der $l^1$-Norm +ausgestattet wird. +Sei $k$ der Index der betragsmässig grössten Komponente von $y_k$, +also $\| y\|_\infty = |y_k|$. +Dann gilt +\[ +|l_y(x)| += +\biggl|\sum_{i=1}^n y_ix_i\biggr| +\le +\sum_{i=1}^n |y_i|\cdot |x_i| +\le +|y_k| \sum_{i=1}^n |x_i| += +\|y\|_\infty\cdot \|x\|_1. +\] +Gleichheit wird erreicht, wenn die Komponente $k$ die einzige +von $0$ verschiedene Komponente des Vektors $x$ ist. +Somit ist $\|l_y\| = \|y\|_\infty$. +\end{beispiel} + + +\subsubsection{Normen auf Funktionenräumen} +Alle auf $\mathbb{R}^n$ und $\mathbb{C}^n$ definierten Normen lassen +sich auf den Raum der stetigen Funktionen $[a,b]\to\mathbb{R}$ oder +$[a,b]\to\mathbb{C}$ verallgemeinern. + +Die Supremumnorm auf dem Vektorraum der stetigen Funktionen ist +\[ +\|f\|_\infty = \sup_{x\in[a,b]} |f(x)| +\] +für $f\in C([a,b],\mathbb{R})$ oder $f\in C([a,b],\mathbb{C})$. + +Für die anderen beiden Normen wird zusätzlich das bestimmte Integral +von Funktionen auf $[a,b]$ benötigt. +Die $L^2$-Norm wird erzeugt von dem Skalarprodukt +\[ +\langle f,g\rangle += +\frac{1}{b-a} +\int_a^b \overline{f}(x)g(x)\,dx +\qquad\Rightarrow\qquad +\|f\|_2^2 = \frac{1}{b-a}\int_a^b |f(x)|^2\,dx. +\] +Die $L^2$-Norm ist dagegen +\[ +\|f\|_1 += +\int_a^b |f(x)|\,dx. +\] + diff --git a/buch/chapters/10-vektorenmatrizen/strukturen.tex b/buch/chapters/10-vektorenmatrizen/strukturen.tex new file mode 100644 index 0000000..a2afa37 --- /dev/null +++ b/buch/chapters/10-vektorenmatrizen/strukturen.tex @@ -0,0 +1,38 @@ +% +% strukturen.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Algebraische Strukturen +\label{buch:section:algebraische-Strukturen}} +\rhead{Algebraische Strukturen} +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/10-vektorenmatrizen/images/strukturen.pdf} +\caption{Übersicht über die verschiedenen algebraischen Strukturen, die +in Abschnitt~\ref{buch:section:algebraische-Strukturen} zusammengestellt +werden. +\label{buch:vektorenmatrizen:fig:strukturen}} +\end{figure} +Im Laufe der Definition der Vektorräume $\Bbbk^n$ und der +Operationen für die Matrizen in $M_{m\times n}(\Bbbk)$ haben +wir eine ganze Reihe von algebraischen Strukturen kennengelernt. +Nicht immer sind alle Operationen verfügbar, in einem Vektorraum +gibt es normalerweise kein Produkt. +Und bei der Konstruktion des Zahlensystems wurde gezeigt, dass +additive oder multiplikative Inverse nicht selbstverständlich +sind. +Sinnvolle Mathematik lässt sich aber erst betreiben, wenn zusammen +mit den vorhandenen Operationen auch einige Regeln erfüllt sind. +Die schränkt die Menge der sinnvollen Gruppierungen von Eigenschaften +ein. +In diesem Abschnitten sollen diesen sinnvollen Gruppierungen von +Eigenschaften Namen gegeben werden. + + +\input{chapters/10-vektorenmatrizen/gruppen.tex} +\input{chapters/10-vektorenmatrizen/ringe.tex} +\input{chapters/10-vektorenmatrizen/algebren.tex} +\input{chapters/10-vektorenmatrizen/koerper.tex} + + |