aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/30-endlichekoerper/uebungsaufgaben
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex
index 83bfd0e..63200a7 100644
--- a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex
+++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex
@@ -4,6 +4,6 @@ Berechnen Sie $666^{666}$ in $\mathbb{F}_{13}$.
Zunächst ist die Basis der Potenz $666=3$ in $\mathbb{F}_{13}$, es
muss also nur $3^{666}$ berechnet werden.
Nach dem kleinen Satz von Fermat ist $3^{12}=1$ in $\mathbb{F}_{13}$.
-Wegen $666 = 12*50+6$ folgt
+Wegen $666 = 12\cdot 50+6$ folgt
$ 3^{666} = 3^6=729=1$ in $\mathbb{F}_{13}$.
\end{loesung}