aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/40-eigenwerte')
-rw-r--r--buch/chapters/40-eigenwerte/Makefile.inc2
-rw-r--r--buch/chapters/40-eigenwerte/chapter.tex28
-rw-r--r--buch/chapters/40-eigenwerte/grundlagen.tex391
-rw-r--r--buch/chapters/40-eigenwerte/normalformen.tex81
4 files changed, 500 insertions, 2 deletions
diff --git a/buch/chapters/40-eigenwerte/Makefile.inc b/buch/chapters/40-eigenwerte/Makefile.inc
index e7237cd..b15f476 100644
--- a/buch/chapters/40-eigenwerte/Makefile.inc
+++ b/buch/chapters/40-eigenwerte/Makefile.inc
@@ -6,6 +6,8 @@
CHAPTERFILES = $(CHAPTERFILES) \
chapters/40-eigenwerte/numerisch.tex \
+ chapters/40-eigenwerte/normalformen.tex \
+ chapters/40-eigenwerte/grundlagen.tex \
chapters/40-eigenwerte/spektralradius.tex \
chapters/40-eigenwerte/spektraltheorie.tex \
chapters/40-eigenwerte/uebungsaufgaben/4001.tex \
diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex
index 2913ca5..5f237a4 100644
--- a/buch/chapters/40-eigenwerte/chapter.tex
+++ b/buch/chapters/40-eigenwerte/chapter.tex
@@ -1,5 +1,5 @@
%
-% chapter.tex -- Kapitel über eigenwerte und eigenvektoren
+% chapter.tex -- Kapitel über Eigenwerte und Eigenvektoren
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
@@ -7,10 +7,34 @@
\label{buch:chapter:eigenwerte-und-eigenvektoren}}
\lhead{Eigenwerte und Eigenvektoren}
\rhead{}
+Die algebraischen Eigenschaften einer Matrix $A$ sind eng mit der
+Frage nach linearen Beziehungen unter den Potenzen von $A^k$ verbunden.
+Im Allgemeinen ist die Berechnung dieser Potenzen eher unübersichtlich,
+es sei denn, die Matrix hat eine spezielle Form.
+Die Potenzen einer Diagonalmatrix erhält man, indem man die Diagonalelemente
+potenziert.
+Auch für Dreiecksmatrizen ist mindestens die Berechnung der Diagonalelemente
+von $A^k$ einfach.
+Die Theorie der Eigenwerte und Eigenvektoren ermöglicht, Matrizen in
+eine solche besonders einfache Form zu bringen.
+In Abschnitt~\ref{buch:section:grundlagen} werden die grundlegenden
+Definitionen der Eigenwerttheorie in Erinnerung gerufen.
+Damit kann dann in Abschnitt~\ref{buch:section:normalformen}
+gezeigt werden, wie Matrizen in besonders einfache Form gebracht
+werden können.
+Die Eigenwerte bestimmen auch die Eigenschaften von numerischen
+Algorithmen, wie in den Abschnitten~\ref{buch:section:spektralradius}
+und \ref{buch:section:numerisch} dargestellt wird.
+Für viele Funktionen kann man auch den Wert $f(A)$ berechnen, unter
+geeigneten Voraussetzungen an den Spektralradius.
+Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
-\input{chapters/40-eigenwerte/numerisch.tex}
+
+\input{chapters/40-eigenwerte/grundlagen.tex}
+\input{chapters/40-eigenwerte/normalformen.tex}
\input{chapters/40-eigenwerte/spektralradius.tex}
+\input{chapters/40-eigenwerte/numerisch.tex}
\input{chapters/40-eigenwerte/spektraltheorie.tex}
\section*{Übungsaufgaben}
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex
new file mode 100644
index 0000000..471c7fb
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/grundlagen.tex
@@ -0,0 +1,391 @@
+%
+% grundlagen.tex -- Grundlagen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Grundlagen
+\label{buch:section:grundlagen}}
+\rhead{Grundlagen}
+Die Potenzen $A^k$ sind besonders einfach zu berechnen, wenn die Matrix
+Diagonalform hat, wenn also $A=\operatorname{diag}(\lambda_1,\dots,\lambda_n)$
+ist.
+In diesem Fall ist $Ae_k=\lambda_k e_k$ für jeden Standardbasisvektor $e_k$.
+Statt sich auf Diagonalmatrizen zu beschränken könnten man also auch
+Vektoren $v$ suchen, für die gilt $Av=\lambda v$, die also von $A$ nur
+gestreckt werden.
+Gelingt es, eine Basis aus solchen sogenanten {\em Eigenvektoren} zu finden,
+dann kann man die Matrix $A$ durch Basiswechsel in diese Form bringen.
+
+%
+%
+%
+\subsection{Kern und Bild
+\label{buch:subsection:kern-und-bild}}
+
+%
+% Begriff des Eigenwertes und Eigenvektors
+%
+\subsection{Eigenwerte und Eigenvektoren
+\label{buch:subsection:eigenwerte-und-eigenvektoren}}
+In diesem Abschnitt betrachten wir Vektorräume $V=\Bbbk^n$ über einem
+beliebigen Körper $\Bbbk$ und quadratische Matrizen
+$A\in M_n(\Bbbk)$.
+In den meisten Anwendungen wird $\Bbbk=\mathbb{R}$ sein.
+Da aber in $\mathbb{R}$ nicht alle algebraischen Gleichungen lösbar sind,
+ist es manchmal notwendig, den Vektorraum zu erweitern um zum Beispiel
+Eigenschaften der Matrix $A$ abzuleiten.
+
+\begin{definition}
+Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum Eigenwert
+$\lambda\in\Bbbk$, wenn $v\ne 0$ und $Av=\lambda v$ gilt.
+\end{definition}
+
+Die Bedingung $v\ne 0$ dient dazu, pathologische Situationen auszuschliessen.
+Für den Nullvektor gilt $A0=\lambda 0$ für jeden beliebigen Wert von
+$\lambda\in\Bbbk$.
+Würde man $v=0$ zulassen, wäre jede Zahl in $\Bbbk$ ein Eigenwert,
+ein Eigenwert von $A$ wäre nichts besonderes.
+Ausserdem wäre $0$ ein Eigenvektor zu jedem beliebigen Eigenwert.
+
+Eigenvektoren sind nicht eindeutig bestimmt, jedes von $0$ verschiedene
+Vielfache von $v$ ist ebenfalls ein Eigenvektor.
+Zu einem Eigenwert kann man also einen Eigenvektor jeweils mit
+geeigneten Eigenschaften finden, zum Beispiel kann man für $\Bbbk = \mathbb{R}$
+Eigenvektoren auf Länge $1$ normieren.
+Im Folgenden werden wir oft die abkürzend linear unabhängige Eigenvektoren
+einfach als ``verschiedene'' Eigenvektoren bezeichnen.
+
+Wenn $v$ ein Eigenvektor von $A$ zum Eigenwert $\lambda$ ist, dann kann
+man ihn mit zusätzlichen Vektoren $v_2,\dots,v_n$ zu einer Basis
+$\mathcal{B}=\{v,v_2,\dots,v_n\}$
+von $V$ ergänzen.
+Die Vektoren $v_k$ mit $k=2,\dots,n$ werden von $A$ natürlich auch
+in den Vektorraum $V$ abgebildet, können also als Linearkombinationen
+\[
+Av = a_{1k}v + a_{2k}v_2 + a_{3k}v_3 + \dots a_{nk}v_n
+\]
+dargestellt werden.
+In der Basis $\mathcal{B}$ bekommt die Matrix $A$ daher die Form
+\[
+A'
+=
+\begin{pmatrix}
+\lambda&a_{12}&a_{13}&\dots &a_{1n}\\
+ 0 &a_{22}&a_{23}&\dots &a_{2n}\\
+ 0 &a_{32}&a_{33}&\dots &a_{3n}\\
+\vdots &\vdots&\vdots&\ddots&\vdots\\
+ 0 &a_{n2}&a_{n3}&\dots &a_{nn}
+\end{pmatrix}.
+\]
+Bereits ein einzelner Eigenwert und ein zugehöriger Eigenvektor
+ermöglichen uns also, die Matrix in eine etwas einfachere Form
+zu bringen.
+
+\begin{definition}
+Für $\lambda\in\Bbbk$ heisst
+\[
+E_\lambda
+=
+\{ v\;|\; Av=\lambda v\}
+\]
+der {\em Eigenraum} zum Eigenwert $\lambda$.
+\index{Eigenraum}%
+\end{definition}
+
+Der Eigenraum $E_\lambda$ ist ein Unterraum von $V$, denn wenn
+$u,v\in E_\lambda$, dann ist
+\[
+A(su+tv)
+=
+sAu+tAv
+=
+s\lambda u + t\lambda v
+=
+\lambda(su+tv),
+\]
+also ist auch $su+tv\in E_\lambda$.
+Der Fall $E_\lambda = \{0\}=0$ bedeutet natürlich, dass $\lambda$ gar kein
+Eigenwert ist.
+
+\begin{satz}
+Wenn $\dim E_\lambda=n$, dann ist $A=\lambda E$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Da $V$ ein $n$-dimensionaler Vektoraum ist, ist $E_\lambda=V$.
+Jeder Vektor $v\in V$ erfüllt also die Bedingung $Av=\lambda v$,
+oder $A=\lambda E$.
+\end{proof}
+
+Wenn man die Eigenräume von $A$ kennt, dann kann man auch die Eigenräume
+von $A+\mu E$ berechnen.
+Ein Vektor $v\in E_\lambda$ erfüllt
+\[
+Av=\lambda v
+\qquad\Rightarrow\qquad
+(A+\mu)v = \lambda v + \mu v
+=
+(\lambda+\mu)v,
+\]
+somit ist $v$ ein Eigenvektor von $A+\mu E$ zum Eigenwert $\lambda+\mu$.
+Insbesondere können wir statt die Eigenvektoren von $A$ zum Eigenwert $\lambda$
+zu studieren, auch die Eigenvektoren zum Eigenwert $0$ von $A-\lambda E$
+untersuchen.
+
+\begin{satz}
+\label{buch:eigenwerte:satz:jordanblock}
+Wenn $\dim E_\lambda=1$ ist, dann gibt es eine Basis von $V$ derart, dass
+$A$ in dieser Matrix die Form
+\begin{equation}
+A'
+=
+\begin{pmatrix}
+ \lambda & 1 & & & & \\
+ & \lambda & 1 & & & \\
+ & & \lambda & & & \\
+ & & & \ddots & & \\
+ & & & & \lambda & 1 \\
+ & & & & & \lambda
+\end{pmatrix}
+\label{buch:eigenwerte:eqn:jordanblock}
+\end{equation}
+hat.
+\end{satz}
+
+\begin{proof}[Beweis]
+Entsprechend der Bemerkung vor dem Satz können wir uns auf die Betrachtung
+der Matrix $B=A-\lambda E$ konzentrieren, deren Eigenraum zum Eigenwert $0$
+$1$-dimensional ist.
+Es gibt also einen Vektor $v_1\ne 0$ mit $Bv_1=0$.
+Der Vektor $v_1$ spannt den Eigenraum auf: $E_0 = \langle v_1\rangle$.
+
+Wir konstruieren jetzt rekursiv eine Folge $v_2,\dots,v_n$ von Vektoren
+mit folgenden Eigenschaften.
+Zunächst soll $v_k=Bv_{k+1}$ für $k=1,\dots,n-1$ sein.
+Ausserdem soll $v_{k+1}$ in jedem Schritt linear unabhängig von den
+Vektoren $v_1,\dots,v_{k-1}$ gewählt werden.
+Wenn diese Konstruktion gelingt, dann ist $\mathcal{B}=\{v_1,\dots,v_n\}$
+eine Basis von $V$ und die Matrix von $B$ in dieser Basis ist
+$A'$ wie in \eqref{buch:eigenwerte:eqn:jordanblock}.
+\end{proof}
+
+\subsection{Das charakteristische Polynom
+\label{buch:subsection:das-charakteristische-polynom}}
+Ein Eigenvektor von $A$ erfüllt $Av=\lambda v$ oder gleichbedeutend
+$(A-\lambda E)v=0$, er ist also eine nichttriviale Lösung des homogenen
+Gleichungssystems mit Koeffizientenmatrix $A-\lambda E$.
+Ein Eigenwert ist also ein Skalar derart, dass $A-\lambda E$
+singulär ist.
+Ob eine Matrix singulär ist, kann mit der Determinante festgestellt
+werden.
+Die Eigenwerte einer Matrix $A$ sind daher die Nullstellen
+von $\det(A-\lambda E)$.
+
+\begin{definition}
+Das {\em charakteristische Polynom}
+\[
+\chi_A(x)
+=
+\det (A-x E)
+=
+\left|
+\begin{matrix}
+a_{11}-x & a_{12} & \dots & a_{1n} \\
+a_{21} & a_{22}-x & \dots & a_{2n} \\
+\vdots &\vdots &\ddots & \vdots \\
+a_{n1} & a_{n2} &\dots & a_{nn}-x
+\end{matrix}
+\right|.
+\]
+der Matrix $A$ ist ein Polynom vom Grad $n$ mit Koeffizienten in $\Bbbk$.
+\end{definition}
+
+Findet man eine Nullstelle $\lambda\in\Bbbk$ von $\chi_A(x)$,
+dann ist die Matrix $A-\lambda E\in M_n(\Bbbk)$ und mit dem Gauss-Algorithmus
+kann man auch mindestens einen Vektor $v\in \Bbbk^n$ finden,
+der $Av=\lambda v$ erfüllt.
+Eine Matrix der Form wie in Satz~\ref{buch:eigenwerte:satz:jordanblock}
+hat
+\[
+\chi_A(x)
+=
+\left|
+\begin{matrix}
+\lambda-x & 1 & & & & \\
+ & \lambda-x & 1 & & & \\
+ & & \lambda-x & & & \\
+ & & &\ddots& & \\
+ & & & &\lambda-x& 1 \\
+ & & & & &\lambda-x
+\end{matrix}
+\right|
+=
+(\lambda-x)^n
+=
+(-1)^n (x-\lambda)^n
+\]
+als charakteristisches Polynom, welches $\lambda$ als einzige
+Nullstelle hat.
+Der Eigenraum der Matrix ist aber nur eindimensional, man kann also
+im Allgemeinen für jede Nullstelle des charakteristischen Polynoms
+nicht mehr als einen Eigenvektor (d.~h.~einen eindimensionalen Eigenraum)
+erwarten.
+
+Wenn das charakteristische Polynom von $A$ keine Nullstellen in $\Bbbk$ hat,
+dann kann es auch keine Eigenvektoren in $Bbbk^n$ geben.
+Gäbe es nämlich einen solchen Vektor, dann müsste eine der Komponenten
+des Vektors von $0$ verschieden sein, wir nehmen an, dass es die Komponente
+in Zeile $k$ ist.
+Die Komponente $v_k$ kann man auf zwei Arten berechnen, einmal als
+die $k$-Komponenten von $Av$ und einmal als $k$-Komponente von $\lambda v$:
+\[
+a_{k1}v_1+\dots+a_{kn}v_n = \lambda v_k.
+\]
+Da $v_k\ne 0$ kann man nach $\lambda$ auflösen und erhält
+\[
+\lambda = \frac{a_{k1}v_1+\dots + a_{kn}v_n}{v_k}.
+\]
+Alle Terme auf der rechten Seite sind in $\Bbbk$ und werden nur mit
+Körperoperationen in $\Bbbk$ verknüpft, also muss auch $\lambda\in\Bbbk$
+sein, im Widerspruch zur Annahme.
+
+Durch hinzufügen von geeigneten Elementen können wir immer zu einem
+Körper $\Bbbk'$ übergehen, in dem das charakteristische Polynom
+in Linearfaktoren zerfällt.
+In diesem Körper kann man jetzt das homogene lineare Gleichungssystem
+mit Koeffizientenmatrix $A-\lambda E$ lösen und damit mindestens
+einen Eigenvektor $v$ für jeden Eigenwert finden.
+Die Komponenten von $v$ liegen in $\Bbbk'$, und mindestens eine davon kann
+nicht in $\Bbbk$ liegen.
+Das bedeutet aber nicht, dass man diese Vektoren nicht für theoretische
+Überlegungen über von $\Bbbk'$ unabhängige Eigenschaften der Matrix $A$ machen.
+Das folgende Beispiel soll diese Idee illustrieren.
+
+\begin{beispiel}
+Wir arbeiten in diesem Beispiel über dem Körper $\Bbbk=\mathbb{Q}$.
+Die Matrix
+\[
+A=\begin{pmatrix}
+-4&7\\
+-2&4
+\end{pmatrix}
+\in
+M_2(\mathbb{Q})
+\]
+hat das charakteristische Polynom
+\[
+\chi_A(x)
+=
+\left|
+\begin{matrix}
+-4-x&7\\-2&4-x
+\end{matrix}
+\right|
+=
+(-4-x)(4-x)-7\cdot(-2)
+=
+-16+x^2+14
+=
+x^2-2.
+\]
+Die Nullstellen sind $\pm\sqrt{2}$ und damit nicht in $\mathbb{Q}$.
+Wir gehen daher über zum Körper $\mathbb{Q}(\sqrt{2})$, in dem
+sich zwei Nullstellen $\lambda=\pm\sqrt{2}$ finden lassen.
+Zu jedem Eigenwert lässt sich auch ein Eigenvektor
+$v_{\pm\sqrt{2}}\in \mathbb{Q}(\sqrt{2})^2$, und unter Verwendung dieser
+Basis ist bekommt die Matrix $A'=TAT^{-1}$ Diagonalform.
+Die Transformationsmatrix $T$ enthält Matrixelemente aus
+$\mathbb{Q}(\sqrt{2})$, die nicht in $\mathbb{Q}$ liegen.
+Die Matrix $A$ lässt sich also über dem Körper $\mathbb{Q}(\sqrt{2})$
+diagonalisieren, nicht aber über dem Körper $\mathbb{Q}$.
+
+Da $A'$ Diagonalform hat mit $\pm\sqrt{2}$ auf der Diagonalen, folgt
+$A^{\prime 2} = 2E$, die Matrix $A'$ erfüllt also die Gleichung
+\begin{equation}
+A^{\prime 2}-E= \chi_{A}(A) = 0.
+\label{buch:grundlagen:eqn:cayley-hamilton-beispiel}
+\end{equation}
+Dies is ein Spezialfall des Satzes von Cayley-Hamilton~\ref{XXX}
+welcher besagt, dass jede Matrix $A$ eine Nullstelle ihres
+charakteristischen Polynoms ist: $\chi_A(A)=0$.
+Da in Gleichung~\ref{buch:grundlagen:eqn:cayley-hamilton-beispiel}
+wurde zwar in $\mathbb{Q}(\sqrt{2})$ hergeleitet, aber in ihr kommen
+keine Koeffizienten aus $\mathbb{Q}(\sqrt{2})$ vor, die man nicht auch
+in $\mathbb{Q}$ berechnen könnte.
+Sie gilt daher ganz allgemein.
+\end{beispiel}
+
+\begin{beispiel}
+Die Matrix
+\[
+A=\begin{pmatrix}
+32&-41\\
+24&-32
+\end{pmatrix}
+\in
+M_2(\mathbb{R})
+\]
+über dem Körper $\Bbbk = \mathbb{R}$
+hat das charakteristische Polynom
+\[
+\det(A-xE)
+=
+\left|
+\begin{matrix}
+32-x&-41 \\
+25 &-32-x
+\end{matrix}
+\right|
+=
+(32-x)(-32-x)-25\cdot(-41)
+=
+x^2-32^2 + 1025
+=
+x^2+1.
+\]
+Die charakteristische Gleichung $\chi_A(x)=0$ hat in $\mathbb{R}$
+keine Lösungen, daher gehen wir zum Körper $\Bbbk'=\mathbb{C}$ über,
+in dem dank dem Fundamentalsatz der Algebra alle Nullstellen zu finden
+sind, sie sind $\pm i$.
+In $C$ lassen sich dann auch Eigenvektoren finden, man muss dazu die
+folgenden linearen Gleichungssyteme lösen:
+\begin{align*}
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
+32-i&-41\\
+25 &-32-i
+\end{tabular}
+&
+\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
+1 & t\\
+0 & 0
+\end{tabular}
+&
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
+32+i&-41\\
+25 &-32+i
+\end{tabular}
+&
+\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}|}
+1 & \overline{t}\\
+0 & 0
+\end{tabular},
+\intertext{wobei wir $t=-41/(32-i) =-41(32+i)/1025= -1.28 -0.04i = (64-1)/50$
+abgekürzt haben.
+Die zugehörigen Eigenvektoren sind}
+v_i&=\begin{pmatrix}t\\i\end{pmatrix}
+&
+v_{-i}&=\begin{pmatrix}\overline{t}\\i\end{pmatrix}
+\end{align*}
+Mit den Vektoren $v_i$ und $v_{-i}$ als Basis kann die Matrix $A$ als
+komplexe Matrix, also mit komplexem $T$ in die komplexe Diagonalmatrix
+$A'=\operatorname{diag}(i,-i)$ transformiert werden.
+Wieder kann man sofort ablesen, dass $A^{\prime2}+E=0$, und wieder kann
+man schliessen, dass für die relle Matrix $A$ ebenfalls $\chi_A(A)=0$
+gelten muss.
+\end{beispiel}
+
+
+
+
diff --git a/buch/chapters/40-eigenwerte/normalformen.tex b/buch/chapters/40-eigenwerte/normalformen.tex
new file mode 100644
index 0000000..f695435
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/normalformen.tex
@@ -0,0 +1,81 @@
+%
+% normalformen.tex -- Normalformen einer Matrix
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Normalformen
+\label{buch:section:normalformen}}
+\rhead{Normalformen}
+In den Beispielen im vorangegangenen wurde wiederholt der Trick
+verwendet, den Koeffizientenkörper so zu erweitern, dass das
+charakteristische Polynom in Linearfaktoren zerfällt und
+für jeden Eigenwert Eigenvektoren gefunden werden können.
+Diese Idee ermöglicht, eine Matrix in einer geeigneten Körpererweiterung
+in eine besonders einfache Form zu bringen, das Problem dort zu lösen.
+Anschliessend kann man sich darum kümmern in welchem Mass die gewonnenen
+Resultate wieder in den ursprünglichen Körper transportiert werden können.
+
+\subsection{Diagonalform}
+Sei $A$ eine beliebige Matrix mit Koeffizienten in $\Bbbk$ und sei $\Bbbk'$
+eine Körpererweiterung von $\Bbbk$ derart, dass das charakteristische
+Polynom in Linearfaktoren
+\[
+\chi_A(x)
+=
+(x-\lambda_1)^{k_1}\cdot (x-\lambda_2)^{k_2}\cdot\dots\cdot (x-\lambda_m)^{k_m}
+\]
+mit Vielfachheiten $k_m$ zerfällt, $\lambda_i\in\Bbbk'$.
+Zu jedem Eigenwert $\lambda_i$ gibt es sicher einen Eigenvektor, wir
+wollen aber in diesem Abschnitt zusätzlich annehmen, dass es eine Basis
+aus Eigenvektoren gibt.
+In dieser Basis bekommt die Matrix Diagonalform, wobei auf der
+Diagonalen nur Eigenwerte vorkommen können.
+Man kann die Vektoren so anordnen, dass die Diagonalmatrix in Blöcke
+der Form $\lambda_iE$ zerfällt
+\[
+\def\temp#1{\multicolumn{1}{|c}{\raisebox{0pt}[12pt][7pt]{\phantom{x}$#1$}\phantom{x}}}
+A'
+=\left(
+\begin{array}{cccc}
+\cline{1-1}
+\temp{\lambda_1E} &\multicolumn{1}{|c}{}& & \\
+\cline{1-2}
+ &\temp{\lambda_2E}&\multicolumn{1}{|c}{}& \\
+\cline{2-3}
+ & &\temp{\ddots}&\multicolumn{1}{|c}{}\\
+\cline{3-4}
+ & & &\multicolumn{1}{|c|}{\raisebox{0pt}[12pt][7pt]{\phantom{x}$\lambda_mE$}\phantom{x}}\\
+\cline{4-4}
+\end{array}
+\right)
+\]
+Über die Grösse eines solchen $\lambda_iE$-Blockes können wir zum jetzigen
+Zeitpunkt noch keine Aussagen machen.
+
+Die Matrizen $A-\lambda_kE$ enthalten jeweils einen Block aus lauter
+Nullen.
+Das Produkt all dieser Matrizen ist daher
+\[
+(A-\lambda_1E)
+(A-\lambda_2E)
+\cdots
+(A-\lambda_mE)
+=
+0.
+\]
+Über dem Körper $\Bbbk'$ gibt es also das Polynom
+$m(x)=(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_m)$ mit der Eigenschaft
+$m(A)=0$.
+Dies ist auch das Polynom von kleinstmöglichem Grad, denn für jeden
+Eigenwert muss ein entsprechender Linearfaktor in so einem Polynom vorkommen.
+Das Polynom $m(x)$ ist daher das Minimalpolynom der Matrix $A$.
+Da jeder Faktor in $m(x)$ auch ein Faktor von $\chi_A(x)$ ist,
+folgt wieder $\chi_A(A)=0$.
+Ausserdem ist über dem Körper $\Bbbk'$ das Polynom $m(x)$ ein Teiler
+des charakteristischen Polynoms $\chi_A(x)$.
+
+\subsection{Jordan-Normalform}
+
+\subsection{Reelle Normalform}
+
+\subsection{Obere Hessenberg-Form}