aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/60-gruppen
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/60-gruppen/images/Makefile19
-rw-r--r--buch/chapters/60-gruppen/images/karten.pdfbin0 -> 486440 bytes
-rw-r--r--buch/chapters/60-gruppen/images/karten.tex111
-rw-r--r--buch/chapters/60-gruppen/images/kartenkreis.pdfbin0 -> 26310 bytes
-rw-r--r--buch/chapters/60-gruppen/images/kartenkreis.tex179
-rw-r--r--buch/chapters/60-gruppen/images/phasenraum.pdfbin24581 -> 72789 bytes
-rw-r--r--buch/chapters/60-gruppen/images/phasenraum.tex72
-rw-r--r--buch/chapters/60-gruppen/images/torus.pngbin0 -> 456476 bytes
-rw-r--r--buch/chapters/60-gruppen/images/torus.pov189
-rw-r--r--buch/chapters/60-gruppen/symmetrien.tex264
10 files changed, 812 insertions, 22 deletions
diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile
new file mode 100644
index 0000000..bc65a71
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/Makefile
@@ -0,0 +1,19 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: phasenraum.pdf kartenkreis.pdf karten.pdf
+
+phasenraum.pdf: phasenraum.tex
+ pdflatex phasenraum.tex
+
+kartenkreis.pdf: kartenkreis.tex
+ pdflatex kartenkreis.tex
+
+torus.png: torus.pov
+ povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov
+
+karten.pdf: karten.tex torus.png
+ pdflatex karten.tex
+
diff --git a/buch/chapters/60-gruppen/images/karten.pdf b/buch/chapters/60-gruppen/images/karten.pdf
new file mode 100644
index 0000000..f0a9879
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/karten.pdf
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/karten.tex b/buch/chapters/60-gruppen/images/karten.tex
new file mode 100644
index 0000000..a13d7c7
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/karten.tex
@@ -0,0 +1,111 @@
+%
+% karten.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\node at (0,0) {\includegraphics[width=10cm]{torus.png}};
+
+\def\s{3}
+
+\node at (-3.5,-0.4) {$U_\alpha$};
+\node at (2.0,-0.4) {$U_\beta$};
+
+\draw[->] (-2,-2.2) -- (-3,-4.3);
+\node at (-2.5,-3.25) [left] {$\varphi_\alpha$};
+
+\draw[->] (1.4,-1.7) -- (3,-4.3);
+\node at (2.5,-3.25) [right] {$\varphi_\beta$};
+
+\begin{scope}[xshift=-4.5cm,yshift=-8cm]
+ \begin{scope}
+ \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30]
+ \fill[color=gray!20]
+ (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=darkgreen]
+ ({\x*\s},{-0.2*\s})
+ --
+ ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=orange]
+ (0,{\y*\s})
+ --
+ ({1*\s},{\y*\s});
+ }
+ \end{scope}
+ \end{scope}
+
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=blue,line width=1.4pt]
+ ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=red,line width=1.4pt]
+ (0,{\y*\s}) -- ({1*\s},{\y*\s});
+ }
+
+ \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
+ \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
+
+ \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
+
+\end{scope}
+
+\begin{scope}[xshift=1.5cm,yshift=-8cm]
+ \begin{scope}
+ \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196
+ % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] =
+ \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30]
+ \fill[color=gray!20]
+ (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=blue]
+ ({\x*\s},{-0.2*\s})
+ --
+ ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=red]
+ (0,{\y*\s})
+ --
+ ({1*\s},{\y*\s});
+ }
+ \end{scope}
+ \end{scope}
+
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=darkgreen,line width=1.4pt]
+ ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s});
+ }
+ \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
+ \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
+ \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
+\end{scope}
+
+\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5);
+\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5);
+
+\node at (0,-5.8) {$\varphi_\beta\circ\varphi_\alpha^{-1}$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/kartenkreis.pdf b/buch/chapters/60-gruppen/images/kartenkreis.pdf
new file mode 100644
index 0000000..3235779
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/kartenkreis.pdf
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex
new file mode 100644
index 0000000..be6d6b3
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/kartenkreis.tex
@@ -0,0 +1,179 @@
+%
+% kartenkreis.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{3}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\fill[color=red!20] (0,-1) rectangle (1.5,1);
+\fill[color=blue!20] (-1.5,-1) rectangle (0,1);
+\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5);
+\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0);
+\fill[color=white] (0,0) circle[radius=1];
+
+\fill[color=gray!20]
+ (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5)
+ -- cycle;
+
+\fill[color=gray!20]
+ (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1)
+ -- cycle;
+\fill[color=gray!20]
+ (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1)
+ -- cycle;
+\fill[color=gray!20]
+ (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1)
+ -- cycle;
+\fill[color=gray!20]
+ (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1)
+ -- cycle;
+
+\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1);
+\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1);
+\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1);
+\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1);
+
+\node at (1.01,1.32)
+ [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$};
+\node at (1.01,-1.28)
+ [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$};
+\node at (-1.24,1.32)
+ [left] {$\varphi_2\circ\varphi_4^{-1}(x)=\sqrt{1-x^2}$};
+\node at (-1.18,-1.28)
+ [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$};
+
+\foreach \y in {0.1,0.3,...,0.9}{
+ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y);
+ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y);
+ \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y);
+ \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y);
+}
+\foreach \x in {0.1,0.3,...,0.9}{
+ \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5);
+ \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5);
+ \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5);
+ \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5);
+}
+
+\draw[color=gray!20,line width=3pt] (0,0) circle[radius=1];
+
+\def\r{1.02}
+
+\begin{scope}
+ \clip (0,-1.1) rectangle (1.1,1.1);
+ \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r);
+ \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02];
+ \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}
+ \clip (-1.1,-1.1) rectangle (0,1.1);
+ \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r);
+ \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02];
+ \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02];
+\end{scope}
+
+\xdef\r{0.98}
+
+\begin{scope}
+ \clip (-1.1,0) rectangle (1.1,1.1);
+ \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r);
+ \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02];
+ \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}
+ \clip (-1.1,-1.1) rectangle (1.1,0);
+ \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r);
+ \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02];
+ \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}[yshift=1.5cm]
+ \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-1,-0.1) rectangle (1,0.1);
+ \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0);
+ \draw[color=darkgreen,line width=1.4pt] (-1,0)
+ circle[radius=0.02];
+ \draw[color=darkgreen,line width=1.4pt] (1,0)
+ circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[yshift=-1.5cm]
+ \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-1,-0.1) rectangle (1,0.1);
+ \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0);
+ \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02];
+ \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[xshift=1.5cm]
+ \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-0.1,-1) rectangle (0.1,1);
+ \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98);
+ \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02];
+ \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[xshift=-1.5cm]
+ \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-0.1,-1) rectangle (0.1,1);
+ \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98);
+ \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02];
+ \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\node[color=red] at (23:1) [right] {$U_{x>0}$};
+\node[color=red] at (1.25,0) [right] {$\varphi_1$};
+
+\node[color=blue] at (157:1) [left] {$U_{x<0}$};
+\node[color=blue] at (-1.25,0) [left] {$\varphi_2$};
+
+\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$};
+\node[color=darkgreen] at (0,1.25) [above] {$\varphi_4$};
+
+\node[color=orange] at (-115:1) [above right] {$U_{y<0}$};
+\node[color=orange] at (0,-1.25) [below] {$\varphi_4$};
+
+\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}];
+\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}];
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/phasenraum.pdf b/buch/chapters/60-gruppen/images/phasenraum.pdf
index 2ab46e4..adfb0c6 100644
--- a/buch/chapters/60-gruppen/images/phasenraum.pdf
+++ b/buch/chapters/60-gruppen/images/phasenraum.pdf
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/phasenraum.tex b/buch/chapters/60-gruppen/images/phasenraum.tex
index 136d91d..2bccc27 100644
--- a/buch/chapters/60-gruppen/images/phasenraum.tex
+++ b/buch/chapters/60-gruppen/images/phasenraum.tex
@@ -14,32 +14,80 @@
\def\skala{1}
\begin{tikzpicture}[>=latex,thick,scale=\skala]
-\pgfmathparse{1/sqrt(2)}
+\def\m{1}
+\def\K{0.444}
+
+\pgfmathparse{sqrt(\K/\m)}
\xdef\o{\pgfmathresult}
\def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) }
-\foreach \r in {1,2,...,6}{
- \draw[line width=0.5pt]
- plot[domain=0:359,samples=360]
+\foreach \r in {0.5,1,...,6}{
+ \draw plot[domain=0:359,samples=360]
({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle;
}
-\draw[color=red,line width=1.4pt]
- plot[domain=0:359,samples=360]
- ({4*cos(\x)},{\o*4*sin(\x)}) -- cycle;
-\draw[->] (-6.1,0) -- (6.3,0) coordinate[label={$x$}];
-\draw[->] (0,-4.4) -- (0,4.7) coordinate[label={right:$p$}];
+\def\tangente#1#2{
+ \pgfmathparse{#2/\m}
+ \xdef\u{\pgfmathresult}
+
+ \pgfmathparse{-#1*\K}
+ \xdef\v{\pgfmathresult}
+
+ \pgfmathparse{sqrt(\u*\u+\v*\v)}
+ \xdef\l{\pgfmathresult}
-\node at \punkt{0}{4} [below right] {$x_0$};
-\node at \punkt{90}{4} [above left] {$\omega x_0$};
+ \fill[color=blue] (#1,#2) circle[radius=0.03];
+ \draw[color=blue,line width=0.5pt]
+ ({#1-0.2*\u/\l},{#2-0.2*\v/\l})
+ --
+ ({#1+0.2*\u/\l},{#2+0.2*\v/\l});
+}
+
+\foreach \x in {-6.25,-5.75,...,6.3}{
+ \foreach \y in {-4.25,-3.75,...,4.3}{
+ \tangente{\x}{\y}
+ }
+}
-\fill[color=white] \punkt{60}{4} rectangle \punkt{58}{5.9};
+%\foreach \x in {0.5,1,...,5.5,6}{
+% \tangente{\x}{0}
+% \tangente{-\x}{0}
+% \foreach \y in {0.5,1,...,4}{
+% \tangente{\x}{\y}
+% \tangente{-\x}{\y}
+% \tangente{\x}{-\y}
+% \tangente{-\x}{-\y}
+% }
+%}
+%\foreach \y in {0.5,1,...,4}{
+% \tangente{0}{\y}
+% \tangente{0}{-\y}
+%}
+
+\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8};
+\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9};
+
+\draw[->,color=red,line width=1.4pt]
+ plot[domain=0:60,samples=360]
+ ({4*cos(\x)},{\o*4*sin(\x)});
+
+\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}];
+\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}];
\fill[color=red] \punkt{60}{4} circle[radius=0.08];
\node[color=red] at \punkt{60}{4} [above right]
{$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$};
+\fill[color=red] \punkt{0}{4} circle[radius=0.08];
+\node[color=red] at \punkt{0}{4} [above right]
+ {$\begin{pmatrix}x_0\\0\end{pmatrix}$};
+
+\fill[color=white] (4,0) circle[radius=0.05];
+\node at (3.9,0) [below right] {$x_0$};
+\fill (0,{\o*4}) circle[radius=0.05];
+\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$};
+
\end{tikzpicture}
\end{document}
diff --git a/buch/chapters/60-gruppen/images/torus.png b/buch/chapters/60-gruppen/images/torus.png
new file mode 100644
index 0000000..c42440f
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/torus.png
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/torus.pov b/buch/chapters/60-gruppen/images/torus.pov
new file mode 100644
index 0000000..3a8e327
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/torus.pov
@@ -0,0 +1,189 @@
+//
+// diffusion.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.034;
+#declare N = 100;
+#declare r = 0.43;
+#declare R = 1;
+
+camera {
+ location <43, 25, -20>
+ look_at <0, -0.01, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <10, 20, -40> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro rotiere(phi, vv)
+ < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z >
+#end
+
+#macro punkt(phi,theta)
+ rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >)
+#end
+
+mesh {
+ #declare phistep = 2 * pi / N;
+ #declare thetastep = 2 * 2 * pi / N;
+ #declare phi = 0;
+ #while (phi < 2 * pi - phistep/2)
+ #declare theta = 0;
+ #while (theta < 2 * pi - thetastep/2)
+ triangle {
+ punkt(phi , theta ),
+ punkt(phi + phistep, theta ),
+ punkt(phi + phistep, theta + thetastep)
+ }
+ triangle {
+ punkt(phi , theta ),
+ punkt(phi + phistep, theta + thetastep),
+ punkt(phi , theta + thetastep)
+ }
+ #declare theta = theta + thetastep;
+ #end
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Gray
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#declare thetastart = -0.2;
+#declare thetaend = 1.2;
+#declare phistart = 5;
+#declare phiend = 6;
+
+union {
+ #declare thetastep = 0.2;
+ #declare theta = thetastart;
+ #while (theta < thetaend + thetastep/2)
+ #declare phistep = (phiend-phistart)/N;
+ #declare phi = phistart;
+ #while (phi < phiend - phistep/2)
+ sphere { punkt(phi,theta), 0.01 }
+ cylinder {
+ punkt(phi,theta),
+ punkt(phi+phistep,theta),
+ 0.01
+ }
+ #declare phi = phi + phistep;
+ #end
+ sphere { punkt(phi,theta), 0.01 }
+ #declare theta = theta + thetastep;
+ #end
+
+ pigment {
+ color Red
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ #declare phistep = 0.2;
+ #declare phi = phistart;
+ #while (phi < phiend + phistep/2)
+ #declare thetastep = (thetaend-thetastart)/N;
+ #declare theta = thetastart;
+ #while (theta < thetaend - thetastep/2)
+ sphere { punkt(phi,theta), 0.01 }
+ cylinder {
+ punkt(phi,theta),
+ punkt(phi,theta+thetastep),
+ 0.01
+ }
+ #declare theta = theta + thetastep;
+ #end
+ sphere { punkt(phi,theta), 0.01 }
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Blue
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#macro punkt2(a,b)
+ punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2)
+#end
+
+#declare darkgreen = rgb<0,0.6,0>;
+
+#declare astart = 0;
+#declare aend = 1;
+#declare bstart = -0.2;
+#declare bend = 1.2;
+union {
+ #declare a = astart;
+ #declare astep = 0.2;
+ #while (a < aend + astep/2)
+ #declare b = bstart;
+ #declare bstep = (bend - bstart)/N;
+ #while (b < bend - bstep/2)
+ sphere { punkt2(a,b), 0.01 }
+ cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 }
+ #declare b = b + bstep;
+ #end
+ sphere { punkt2(a,b), 0.01 }
+ #declare a = a + astep;
+ #end
+ pigment {
+ color darkgreen
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+union {
+ #declare b = bstart;
+ #declare bstep = 0.2;
+ #while (b < bend + bstep/2)
+ #declare a = astart;
+ #declare astep = (aend - astart)/N;
+ #while (a < aend - astep/2)
+ sphere { punkt2(a,b), 0.01 }
+ cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 }
+ #declare a = a + astep;
+ #end
+ sphere { punkt2(a,b), 0.01 }
+ #declare b = b + bstep;
+ #end
+ pigment {
+ color Orange
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex
index 80f6534..b686791 100644
--- a/buch/chapters/60-gruppen/symmetrien.tex
+++ b/buch/chapters/60-gruppen/symmetrien.tex
@@ -156,6 +156,14 @@ D_{\alpha}
ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$.
\subsubsection{Der harmonische Oszillator}
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/phasenraum.pdf}
+\caption{Die Lösungen der
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$.
+\label{chapter:gruppen:fig:phasenraum}}
+\end{figure}
Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$
schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung
\[
@@ -206,7 +214,7 @@ p(t) = \cos \omega t.
\]
In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$
und $p(0)=p_0$
-\[
+\begin{equation}
\begin{pmatrix}
x(t)\\
p(t)
@@ -217,9 +225,10 @@ p(t)
\cos \omega t & \frac{1}{\omega} \sin\omega t \\
-\omega \sin\omega t & \cos\omega t
\end{pmatrix}
-}_{\Phi_t}
+}_{\displaystyle =\Phi_t}
\begin{pmatrix}x_0\\p_0\end{pmatrix}
-\]
+\label{buch:gruppen:eqn:phi}
+\end{equation}
schreiben.
Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von
$\operatorname{GL}_n(\mathbb{R})$, da
@@ -260,17 +269,252 @@ Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie
des Differentialgleichungssystems, welches den harmonischen Oszillator
beschreibt.
-\begin{figure}
-\centering
-\includegraphics{chapters/60-gruppen/images/phasenraum.pdf}
-\caption{Die Lösungen der
+\subsubsection{Fluss einer Differentialgleichung}
+Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils
+Matrizen in $\operatorname{GL}_n(\mathbb{R})$.
+Der Grund dafür ist, dass die
Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
-im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$.
-\label{chapter:gruppen:fig:phasenraum}}
-\end{figure}
+linear ist.
+Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$
+die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch
+Linearkombination der Lösungen erhalten werden kann, also
+aus der Formel
+\[
+\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2.
+\]
+Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss.
+
+Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung
+$\Phi$ konstruieren, die aber nicht mehr linear ist.
+Sei dazu die Differentialgleichung erster Ordnung
+\begin{equation}
+\frac{dx}{dt}
+=
+f(t,x)
+\qquad\text{mit}\qquad
+f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n
+\label{buch:gruppen:eqn:dgl}
+\end{equation}
+gegeben.
+Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine
+gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$.
+Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch
+bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von
+$x_0$ abhängt.
+Dies erlaubt eine Abbildung
+\[
+\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n
+:
+(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+\]
+zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar
+abhängt.
+Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass
+also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist.
+
+Aus der Definition lässt sich auch ableiten, dass
+$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt.
+$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt
+und sich während der Zeit $t$ entwickelt.
+$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$
+beginnt und sich während der Zeit $s$ entwickelt.
+Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei
+$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt.
+In Formeln bedeutet dies
+\[
+\Phi_{s+t} = \Phi_s\circ \Phi_t.
+\]
+Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus
+von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren
+Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$.
+
+\begin{definition}
+Die Abbildung
+\[
+\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n
+:
+(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+\]
+heisst der {\em Fluss} der Differentialgleichung
+\eqref{buch:gruppen:eqn:dgl},
+wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$
+eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$.
+\end{definition}
+
+Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also
+der Fluss der Differentialgleichung des harmonischen Oszillators.
\subsection{Mannigfaltigkeiten
\label{buch:subsection:mannigfaltigkeit}}
+Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl}
+stellt einen Zusammenhang her zwischen einem Punkt $x$ und der
+Tangentialrichtung einer Bahnkurve $f(t,x)$.
+Die Ableitung liefert die lineare Näherung der Bahkurve
+\[
+x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h)
+\]
+für $h$ in einer kleinen Umgebung von $0$.
+Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von
+$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft.
+
+Diese Idee funktioniert nicht mehr zum Beispiel für eine
+Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte
+$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche
+liegen.
+Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig
+ist, die Bahn auf der Kugeloberfläche zu halten.
+Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für
+Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind.
+Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor
+nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert
+werden kann, er kann nur definiert werden, wenn man sich die Kugel als
+in einen höherdimensionalen Raum eingebettet vorstellen kann.
+
+Um die Idee der Differentialgleichung auf einer beliebigen Fläche
+konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung
+auf eine Art zu definieren, die nicht von der Einbettung der Fläche
+in den $n$-dimensionalen Raum abhängig ist.
+Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit}
+löst dieses Problem.
+
+\subsubsection{Karten}
+Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem
+der geographischen Länge und Breite.
+Dieses Koordinatensystem funktioniert gut, solange man sich nicht an
+den geographischen Polen befindet, denn deren Koordinaten sind
+nicht mehr eindeutig.
+Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger
+geographischer Länge beschreiben den Nordpol.
+Auch die Ableitung funktioniert dort nicht mehr.
+Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol,
+springt die Ableitung der geographischen Breite von einem positiven
+Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein.
+Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar,
+da die meisten Reisen nicht über die Pole erfolgen.
+
+Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet,
+kann das Problem lösen, indem er eine lokale Karte für das Gebiet
+um den Pol erstellt.
+Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch
+ein kartesisches Koordinatensystem, er muss nur eine Methode haben,
+wie er seine Koordinaten wieder auf geographische Länge und Breite
+umrechnen will.
+Und wenn er über Geschwindigkeiten kommunizieren will, dann muss
+er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem
+umrechnen können auf die Kugelkoordinaten.
+Dazu muss seine Umrechnungsformel von kartesischen Koordinaten
+auf Kugelkoordinaten differenzierbar sein.
+
+Diese Idee wird vom Konzept der Mannigfaltigkeit verallgemeinert.
+Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten,
+die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren
+verschiedenen Koordinatensystemen versehen werden kann.
+Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge
+$U\subset M$ in den Raum $\mathbb{R}^n$.
+Die Komponenten dieser Abbildung heissen die {\em Koordinaten}.
+
+\begin{definition}
+Eine Karte auf $M$ ist eine umkehrbare Abbildung
+$\varphi\colon U\to \mathbb{R}^n$.
+Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$
+derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$
+überdecken, und dass die Kartenwechsel Abbildungen
+\[
+\varphi_\beta\circ\varphi_\alpha^{-1}
+\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)
+\to
+\varphi_\beta(U_\alpha\cap U_\beta)
+\]
+als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar
+ist.
+Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine
+Menge $M$ mit einem differenzierbaren Atlas.
+\end{definition}
+
+Karten und Atlanten regeln also nur, wie sich verschiedene lokale
+Koordinatensysteme ineinander umrechnen lassen.
+
+\begin{beispiel}
+$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn
+die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein
+Atlas von $M$.
+\end{beispiel}
+
+\begin{beispiel}
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf}
+\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$.
+\label{buch:gruppen:fig:kartenkreis}}
+\end{figure}
+Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit.
+Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden,
+da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie
+gibt.
+Man kann aber die folgenden vier Karten verwenden:
+\begin{align*}
+\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to
+:
+(x,y) \mapsto y\\
+\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to
+:
+(x,y) \mapsto y\\
+\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to
+:
+(x,y) \mapsto x\\
+\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to
+:
+(x,y) \mapsto x
+\end{align*}
+Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten
+auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie.
+
+Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt,
+hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen
+zu können.
+Dasselbe gilt für $\varphi_3$ und $\varphi_4$.
+
+Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben
+jeweils die Punkte der Kreislinie in einem Quadranten.
+Die Umrechnung zwischen den Koordinaten erfolgt je nach Quadrant durch
+\[
+x\mapsto y=\pm\sqrt{1-x^2\mathstrut}
+\qquad\text{oder}\qquad
+y\mapsto x=\pm\sqrt{1-y^2\mathstrut},
+\]
+diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar,
+Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen
+$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten
+nicht vorkommen können.
+Somit bilden die vier Karten einen differenzierbaren Atlas für
+die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}).
+\end{beispiel}
+
+\begin{beispiel}
+Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich
+für eine $n$-di\-men\-sio\-nale Sphäre
+\[
+S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\}
+\]
+immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen
+\[
+\varphi_{i,\pm}
+\colon
+U_{i,\pm}
+=
+\{p\in S^n\;|\; \pm x_i >0\}
+\to
+\mathbb{R}^n
+:
+p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1})
+\]
+konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht.
+\end{beispiel}
+
+\subsubsection{Tangentialraum}
+
+\subsubsection{Einbettung und Karten}
\subsection{Der Satz von Noether
\label{buch:subsection:noether}}