diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/60-gruppen/chapter.tex | 94 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/Makefile | 50 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/karten.tex | 224 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/kartenkreis.tex | 378 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/phasenraum.tex | 186 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/scherungen.tex | 314 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/sl2.tex | 292 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/torus.pov | 378 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/lie-algebren.tex | 1294 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/lie-gruppen.tex | 1762 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/symmetrien.tex | 1450 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/uebungsaufgaben/6001.tex | 466 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/uebungsaufgaben/6002.tex | 324 |
13 files changed, 3606 insertions, 3606 deletions
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index 3b1abc1..aa5469f 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -1,47 +1,47 @@ -% -% chapter.tex -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\chapter{Matrizengruppen -\label{buch:chapter:matrizengruppen}} -\lhead{Matrizengruppen} -\rhead{} -Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder -physikalischen Systemen zu beschreiben. -Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu -auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer -phyisikalischen Grösse über die Zeit. -Solche Symmetrien müssen durch Matrizen beschrieben werden können, -die auf stetige oder sogar differenzierbare Art von der Zeit abhängen. -Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt -werden, muss also eine zusätzliche Struktur haben, die ermöglicht, -sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen -zu sprechen. - -Die Menge der Matrizen bilden zunächst eine Gruppe, -die zusätzliche differenziarbare Struktur macht daraus -eine sogenannte Lie-Gruppe. -Die Ableitungen nach einem Parameter liegen in der sogenannten -Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen -Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt. -Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft, -so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften -der Lie-Gruppe aus der Lie-Algebra ableiten lassen. -Die Verbindung wird hergestellt durch die Exponentialabbildung. -Ziel dieses Kapitels ist, die Grundzüge dieses interessanten -Zusammenhangs darzustellen. - -\input{chapters/60-gruppen/symmetrien.tex} -\input{chapters/60-gruppen/lie-gruppen.tex} -\input{chapters/60-gruppen/lie-algebren.tex} -%\input{chapters/60-gruppen/homogen.tex} - -\section*{Übungsaufgaben} -\rhead{Übungsaufgaben} -\aufgabetoplevel{chapters/60-gruppen/uebungsaufgaben} -\begin{uebungsaufgaben} -\uebungsaufgabe{6002} -\uebungsaufgabe{6001} -\end{uebungsaufgaben} - +%
+% chapter.tex
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\chapter{Matrizengruppen
+\label{buch:chapter:matrizengruppen}}
+\lhead{Matrizengruppen}
+\rhead{}
+Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder
+physikalischen Systemen zu beschreiben.
+Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu
+auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer
+phyisikalischen Grösse über die Zeit.
+Solche Symmetrien müssen durch Matrizen beschrieben werden können,
+die auf stetige oder sogar differenzierbare Art von der Zeit abhängen.
+Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt
+werden, muss also eine zusätzliche Struktur haben, die ermöglicht,
+sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen
+zu sprechen.
+
+Die Menge der Matrizen bilden zunächst eine Gruppe,
+die zusätzliche differenziarbare Struktur macht daraus
+eine sogenannte Lie-Gruppe.
+Die Ableitungen nach einem Parameter liegen in der sogenannten
+Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen
+Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt.
+Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft,
+so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften
+der Lie-Gruppe aus der Lie-Algebra ableiten lassen.
+Die Verbindung wird hergestellt durch die Exponentialabbildung.
+Ziel dieses Kapitels ist, die Grundzüge dieses interessanten
+Zusammenhangs darzustellen.
+
+\input{chapters/60-gruppen/symmetrien.tex}
+\input{chapters/60-gruppen/lie-gruppen.tex}
+\input{chapters/60-gruppen/lie-algebren.tex}
+%\input{chapters/60-gruppen/homogen.tex}
+
+\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
+\aufgabetoplevel{chapters/60-gruppen/uebungsaufgaben}
+\begin{uebungsaufgaben}
+\uebungsaufgabe{6002}
+\uebungsaufgabe{6001}
+\end{uebungsaufgaben}
+
diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile index 3ed39e5..8cd824f 100644 --- a/buch/chapters/60-gruppen/images/Makefile +++ b/buch/chapters/60-gruppen/images/Makefile @@ -1,25 +1,25 @@ -# -# Makefile -# -# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -# -all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf - -phasenraum.pdf: phasenraum.tex - pdflatex phasenraum.tex - -kartenkreis.pdf: kartenkreis.tex - pdflatex kartenkreis.tex - -torus.png: torus.pov - povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov - -karten.pdf: karten.tex torus.png - pdflatex karten.tex - -sl2.pdf: sl2.tex - pdflatex sl2.tex - -scherungen.pdf: scherungen.tex - pdflatex scherungen.tex - +#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf
+
+phasenraum.pdf: phasenraum.tex
+ pdflatex phasenraum.tex
+
+kartenkreis.pdf: kartenkreis.tex
+ pdflatex kartenkreis.tex
+
+torus.png: torus.pov
+ povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov
+
+karten.pdf: karten.tex torus.png
+ pdflatex karten.tex
+
+sl2.pdf: sl2.tex
+ pdflatex sl2.tex
+
+scherungen.pdf: scherungen.tex
+ pdflatex scherungen.tex
+
diff --git a/buch/chapters/60-gruppen/images/karten.tex b/buch/chapters/60-gruppen/images/karten.tex index c8eb4a3..67c8d70 100644 --- a/buch/chapters/60-gruppen/images/karten.tex +++ b/buch/chapters/60-gruppen/images/karten.tex @@ -1,112 +1,112 @@ -% -% karten.tex -- template for standalon tikz images -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\definecolor{darkgreen}{rgb}{0,0.6,0} - -\node at (0,0) {\includegraphics[width=10cm]{torus.png}}; - -\def\s{3} - -\node at (-3.5,-0.4) {$U_\alpha$}; -\node at (2.0,-0.4) {$U_\beta$}; - -\draw[->] (-2,-2.2) -- (-3,-4.3); -\node at (-2.5,-3.25) [left] {$\varphi_\alpha$}; - -\draw[->] (1.4,-1.7) -- (3,-4.3); -\node at (2.5,-3.25) [right] {$\varphi_\beta$}; - -\begin{scope}[xshift=-4.5cm,yshift=-8cm] - \begin{scope} - \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); - \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30] - \fill[color=gray!20] - (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); - \foreach \x in {0,0.2,...,1}{ - \draw[color=darkgreen] - ({\x*\s},{-0.2*\s}) - -- - ({\x*\s},{1.2*\s}); - } - \foreach \y in {-0.2,0,...,1.2}{ - \draw[color=orange] - (0,{\y*\s}) - -- - ({1*\s},{\y*\s}); - } - \end{scope} - \end{scope} - - \foreach \x in {0,0.2,...,1}{ - \draw[color=blue,line width=1.4pt] - ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s}); - } - \foreach \y in {-0.2,0,...,1.2}{ - \draw[color=red,line width=1.4pt] - (0,{\y*\s}) -- ({1*\s},{\y*\s}); - } - - \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}]; - \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}]; - - \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$}; - -\end{scope} - -\begin{scope}[xshift=1.5cm,yshift=-8cm] - \begin{scope} - \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); - % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196 - % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] = - \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30] - \fill[color=gray!20] - (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); - \foreach \x in {0,0.2,...,1}{ - \draw[color=blue] - ({\x*\s},{-0.2*\s}) - -- - ({\x*\s},{1.2*\s}); - } - \foreach \y in {-0.2,0,...,1.2}{ - \draw[color=red] - (0,{\y*\s}) - -- - ({1*\s},{\y*\s}); - } - \end{scope} - \end{scope} - - \foreach \x in {0,0.2,...,1}{ - \draw[color=darkgreen,line width=1.4pt] - ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s}); - } - \foreach \y in {-0.2,0,...,1.2}{ - \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s}); - } - \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}]; - \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}]; - \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$}; -\end{scope} - -\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5); -\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5); - -\node at (0,-5.9) - {$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}$}; - -\end{tikzpicture} -\end{document} - +%
+% karten.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\node at (0,0) {\includegraphics[width=10cm]{torus.png}};
+
+\def\s{3}
+
+\node at (-3.5,-0.4) {$U_\alpha$};
+\node at (2.0,-0.4) {$U_\beta$};
+
+\draw[->] (-2,-2.2) -- (-3,-4.3);
+\node at (-2.5,-3.25) [left] {$\varphi_\alpha$};
+
+\draw[->] (1.4,-1.7) -- (3,-4.3);
+\node at (2.5,-3.25) [right] {$\varphi_\beta$};
+
+\begin{scope}[xshift=-4.5cm,yshift=-8cm]
+ \begin{scope}
+ \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30]
+ \fill[color=gray!20]
+ (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=darkgreen]
+ ({\x*\s},{-0.2*\s})
+ --
+ ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=orange]
+ (0,{\y*\s})
+ --
+ ({1*\s},{\y*\s});
+ }
+ \end{scope}
+ \end{scope}
+
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=blue,line width=1.4pt]
+ ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=red,line width=1.4pt]
+ (0,{\y*\s}) -- ({1*\s},{\y*\s});
+ }
+
+ \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
+ \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
+
+ \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
+
+\end{scope}
+
+\begin{scope}[xshift=1.5cm,yshift=-8cm]
+ \begin{scope}
+ \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196
+ % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] =
+ \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30]
+ \fill[color=gray!20]
+ (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=blue]
+ ({\x*\s},{-0.2*\s})
+ --
+ ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=red]
+ (0,{\y*\s})
+ --
+ ({1*\s},{\y*\s});
+ }
+ \end{scope}
+ \end{scope}
+
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=darkgreen,line width=1.4pt]
+ ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s});
+ }
+ \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
+ \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
+ \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
+\end{scope}
+
+\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5);
+\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5);
+
+\node at (0,-5.9)
+ {$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex index 4f19937..ff6331e 100644 --- a/buch/chapters/60-gruppen/images/kartenkreis.tex +++ b/buch/chapters/60-gruppen/images/kartenkreis.tex @@ -1,189 +1,189 @@ -% -% kartenkreis.tex -- template for standalon tikz images -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{3} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\definecolor{darkgreen}{rgb}{0,0.6,0} - -\fill[color=red!20] (0,-1) rectangle (1.5,1); -\fill[color=blue!20] (-1.5,-1) rectangle (0,1); -\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5); -\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0); -\fill[color=white] (0,0) circle[radius=1]; - -\fill[color=gray!20] - (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5) - -- cycle; -\fill[color=gray!20] - (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5) - -- cycle; -\fill[color=gray!20] - (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5) - -- cycle; -\fill[color=gray!20] - (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5) - -- cycle; - -\fill[color=gray!20] - (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1) - -- cycle; -\fill[color=gray!20] - (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1) - -- cycle; -\fill[color=gray!20] - (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1) - -- cycle; -\fill[color=gray!20] - (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1) - -- cycle; - -\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1); -\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1); -\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1); -\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1); - -\node at (1.01,1.32) - [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$}; -\node at (1.6,1.6) {$\varphi_{31}$}; - -\node at (1.01,-1.28) - [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$}; -\node at (1.6,-1.6) {$\varphi_{14}$}; - -\node at (-1.24,1.32) - [left] {$\varphi_2\circ\varphi_3^{-1}(x)=\sqrt{1-x^2}$}; -\node at (-1.6,1.6) {$\varphi_{23}$}; - -\node at (-1.18,-1.28) - [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$}; -\node at (-1.6,-1.6) {$\varphi_{42}$}; - - -\foreach \y in {0.1,0.3,...,0.9}{ - \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] - ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y); - \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] - ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y); - \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm] - ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y); - \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm] - ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y); -} -\foreach \x in {0.1,0.3,...,0.9}{ - \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm] - ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5); - \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm] - ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5); - \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm] - ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5); - \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm] - ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5); -} - -%\draw[color=gray!50,line width=3pt] (0,0) circle[radius=1]; -\draw[color=yellow!30,line width=3pt] (0,0) circle[radius=1]; -\node[color=yellow] at ({1/sqrt(2)},{1/sqrt(2)}) [above right] {$S^1$}; - -\def\r{1.02} - -\begin{scope} - \clip (0,-1.1) rectangle (1.1,1.1); - \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r); - \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02]; - \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02]; -\end{scope} - -\begin{scope} - \clip (-1.1,-1.1) rectangle (0,1.1); - \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r); - \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02]; - \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02]; -\end{scope} - -\xdef\r{0.98} - -\begin{scope} - \clip (-1.1,0) rectangle (1.1,1.1); - \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r); - \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02]; - \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02]; -\end{scope} - -\begin{scope} - \clip (-1.1,-1.1) rectangle (1.1,0); - \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r); - \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02]; - \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02]; -\end{scope} - -\begin{scope}[yshift=1.5cm] - \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}]; - \begin{scope} - \clip (-1,-0.1) rectangle (1,0.1); - \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0); - \draw[color=darkgreen,line width=1.4pt] (-1,0) - circle[radius=0.02]; - \draw[color=darkgreen,line width=1.4pt] (1,0) - circle[radius=0.02]; - \end{scope} -\end{scope} - -\begin{scope}[yshift=-1.5cm] - \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}]; - \begin{scope} - \clip (-1,-0.1) rectangle (1,0.1); - \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0); - \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02]; - \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02]; - \end{scope} -\end{scope} - -\begin{scope}[xshift=1.5cm] - \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}]; - \begin{scope} - \clip (-0.1,-1) rectangle (0.1,1); - \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98); - \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02]; - \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02]; - \end{scope} -\end{scope} - -\begin{scope}[xshift=-1.5cm] - \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}]; - \begin{scope} - \clip (-0.1,-1) rectangle (0.1,1); - \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98); - \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02]; - \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02]; - \end{scope} -\end{scope} - -\node[color=red] at (23:1) [right] {$U_{x>0}$}; -\node[color=red] at (1.25,0) [right] {$\varphi_1$}; - -\node[color=blue] at (157:1) [left] {$U_{x<0}$}; -\node[color=blue] at (-1.25,0) [left] {$\varphi_2$}; - -\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$}; -\node[color=darkgreen] at (0,1.25) [above] {$\varphi_3$}; - -\node[color=orange] at (-115:1) [above right] {$U_{y<0}$}; -\node[color=orange] at (0,-1.25) [below] {$\varphi_4$}; - -\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}]; -\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}]; - -\end{tikzpicture} -\end{document} - +%
+% kartenkreis.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{3}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\fill[color=red!20] (0,-1) rectangle (1.5,1);
+\fill[color=blue!20] (-1.5,-1) rectangle (0,1);
+\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5);
+\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0);
+\fill[color=white] (0,0) circle[radius=1];
+
+\fill[color=gray!20]
+ (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5)
+ -- cycle;
+
+\fill[color=gray!20]
+ (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1)
+ -- cycle;
+\fill[color=gray!20]
+ (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1)
+ -- cycle;
+\fill[color=gray!20]
+ (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1)
+ -- cycle;
+\fill[color=gray!20]
+ (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1)
+ -- cycle;
+
+\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1);
+\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1);
+\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1);
+\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1);
+
+\node at (1.01,1.32)
+ [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$};
+\node at (1.6,1.6) {$\varphi_{31}$};
+
+\node at (1.01,-1.28)
+ [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$};
+\node at (1.6,-1.6) {$\varphi_{14}$};
+
+\node at (-1.24,1.32)
+ [left] {$\varphi_2\circ\varphi_3^{-1}(x)=\sqrt{1-x^2}$};
+\node at (-1.6,1.6) {$\varphi_{23}$};
+
+\node at (-1.18,-1.28)
+ [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$};
+\node at (-1.6,-1.6) {$\varphi_{42}$};
+
+
+\foreach \y in {0.1,0.3,...,0.9}{
+ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y);
+ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y);
+ \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y);
+ \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y);
+}
+\foreach \x in {0.1,0.3,...,0.9}{
+ \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5);
+ \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5);
+ \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5);
+ \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5);
+}
+
+%\draw[color=gray!50,line width=3pt] (0,0) circle[radius=1];
+\draw[color=yellow!30,line width=3pt] (0,0) circle[radius=1];
+\node[color=yellow] at ({1/sqrt(2)},{1/sqrt(2)}) [above right] {$S^1$};
+
+\def\r{1.02}
+
+\begin{scope}
+ \clip (0,-1.1) rectangle (1.1,1.1);
+ \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r);
+ \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02];
+ \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}
+ \clip (-1.1,-1.1) rectangle (0,1.1);
+ \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r);
+ \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02];
+ \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02];
+\end{scope}
+
+\xdef\r{0.98}
+
+\begin{scope}
+ \clip (-1.1,0) rectangle (1.1,1.1);
+ \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r);
+ \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02];
+ \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}
+ \clip (-1.1,-1.1) rectangle (1.1,0);
+ \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r);
+ \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02];
+ \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}[yshift=1.5cm]
+ \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-1,-0.1) rectangle (1,0.1);
+ \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0);
+ \draw[color=darkgreen,line width=1.4pt] (-1,0)
+ circle[radius=0.02];
+ \draw[color=darkgreen,line width=1.4pt] (1,0)
+ circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[yshift=-1.5cm]
+ \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-1,-0.1) rectangle (1,0.1);
+ \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0);
+ \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02];
+ \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[xshift=1.5cm]
+ \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-0.1,-1) rectangle (0.1,1);
+ \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98);
+ \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02];
+ \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[xshift=-1.5cm]
+ \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-0.1,-1) rectangle (0.1,1);
+ \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98);
+ \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02];
+ \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\node[color=red] at (23:1) [right] {$U_{x>0}$};
+\node[color=red] at (1.25,0) [right] {$\varphi_1$};
+
+\node[color=blue] at (157:1) [left] {$U_{x<0}$};
+\node[color=blue] at (-1.25,0) [left] {$\varphi_2$};
+
+\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$};
+\node[color=darkgreen] at (0,1.25) [above] {$\varphi_3$};
+
+\node[color=orange] at (-115:1) [above right] {$U_{y<0}$};
+\node[color=orange] at (0,-1.25) [below] {$\varphi_4$};
+
+\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}];
+\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}];
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/phasenraum.tex b/buch/chapters/60-gruppen/images/phasenraum.tex index 2bccc27..2305b26 100644 --- a/buch/chapters/60-gruppen/images/phasenraum.tex +++ b/buch/chapters/60-gruppen/images/phasenraum.tex @@ -1,93 +1,93 @@ -% -% phasenraum.tex -- -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\def\m{1} -\def\K{0.444} - -\pgfmathparse{sqrt(\K/\m)} -\xdef\o{\pgfmathresult} - -\def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) } - -\foreach \r in {0.5,1,...,6}{ - \draw plot[domain=0:359,samples=360] - ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle; -} - -\def\tangente#1#2{ - \pgfmathparse{#2/\m} - \xdef\u{\pgfmathresult} - - \pgfmathparse{-#1*\K} - \xdef\v{\pgfmathresult} - - \pgfmathparse{sqrt(\u*\u+\v*\v)} - \xdef\l{\pgfmathresult} - - \fill[color=blue] (#1,#2) circle[radius=0.03]; - \draw[color=blue,line width=0.5pt] - ({#1-0.2*\u/\l},{#2-0.2*\v/\l}) - -- - ({#1+0.2*\u/\l},{#2+0.2*\v/\l}); -} - -\foreach \x in {-6.25,-5.75,...,6.3}{ - \foreach \y in {-4.25,-3.75,...,4.3}{ - \tangente{\x}{\y} - } -} - -%\foreach \x in {0.5,1,...,5.5,6}{ -% \tangente{\x}{0} -% \tangente{-\x}{0} -% \foreach \y in {0.5,1,...,4}{ -% \tangente{\x}{\y} -% \tangente{-\x}{\y} -% \tangente{\x}{-\y} -% \tangente{-\x}{-\y} -% } -%} -%\foreach \y in {0.5,1,...,4}{ -% \tangente{0}{\y} -% \tangente{0}{-\y} -%} - -\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8}; -\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9}; - -\draw[->,color=red,line width=1.4pt] - plot[domain=0:60,samples=360] - ({4*cos(\x)},{\o*4*sin(\x)}); - -\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}]; -\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}]; - -\fill[color=red] \punkt{60}{4} circle[radius=0.08]; -\node[color=red] at \punkt{60}{4} [above right] - {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$}; - -\fill[color=red] \punkt{0}{4} circle[radius=0.08]; -\node[color=red] at \punkt{0}{4} [above right] - {$\begin{pmatrix}x_0\\0\end{pmatrix}$}; - -\fill[color=white] (4,0) circle[radius=0.05]; -\node at (3.9,0) [below right] {$x_0$}; -\fill (0,{\o*4}) circle[radius=0.05]; -\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$}; - -\end{tikzpicture} -\end{document} - +%
+% phasenraum.tex --
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\m{1}
+\def\K{0.444}
+
+\pgfmathparse{sqrt(\K/\m)}
+\xdef\o{\pgfmathresult}
+
+\def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) }
+
+\foreach \r in {0.5,1,...,6}{
+ \draw plot[domain=0:359,samples=360]
+ ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle;
+}
+
+\def\tangente#1#2{
+ \pgfmathparse{#2/\m}
+ \xdef\u{\pgfmathresult}
+
+ \pgfmathparse{-#1*\K}
+ \xdef\v{\pgfmathresult}
+
+ \pgfmathparse{sqrt(\u*\u+\v*\v)}
+ \xdef\l{\pgfmathresult}
+
+ \fill[color=blue] (#1,#2) circle[radius=0.03];
+ \draw[color=blue,line width=0.5pt]
+ ({#1-0.2*\u/\l},{#2-0.2*\v/\l})
+ --
+ ({#1+0.2*\u/\l},{#2+0.2*\v/\l});
+}
+
+\foreach \x in {-6.25,-5.75,...,6.3}{
+ \foreach \y in {-4.25,-3.75,...,4.3}{
+ \tangente{\x}{\y}
+ }
+}
+
+%\foreach \x in {0.5,1,...,5.5,6}{
+% \tangente{\x}{0}
+% \tangente{-\x}{0}
+% \foreach \y in {0.5,1,...,4}{
+% \tangente{\x}{\y}
+% \tangente{-\x}{\y}
+% \tangente{\x}{-\y}
+% \tangente{-\x}{-\y}
+% }
+%}
+%\foreach \y in {0.5,1,...,4}{
+% \tangente{0}{\y}
+% \tangente{0}{-\y}
+%}
+
+\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8};
+\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9};
+
+\draw[->,color=red,line width=1.4pt]
+ plot[domain=0:60,samples=360]
+ ({4*cos(\x)},{\o*4*sin(\x)});
+
+\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}];
+\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}];
+
+\fill[color=red] \punkt{60}{4} circle[radius=0.08];
+\node[color=red] at \punkt{60}{4} [above right]
+ {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$};
+
+\fill[color=red] \punkt{0}{4} circle[radius=0.08];
+\node[color=red] at \punkt{0}{4} [above right]
+ {$\begin{pmatrix}x_0\\0\end{pmatrix}$};
+
+\fill[color=white] (4,0) circle[radius=0.05];
+\node at (3.9,0) [below right] {$x_0$};
+\fill (0,{\o*4}) circle[radius=0.05];
+\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/scherungen.tex b/buch/chapters/60-gruppen/images/scherungen.tex index 893bd12..f6df172 100644 --- a/buch/chapters/60-gruppen/images/scherungen.tex +++ b/buch/chapters/60-gruppen/images/scherungen.tex @@ -1,157 +1,157 @@ -% -% scherungen.tex -- template for standalon tikz images -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\definecolor{blau}{rgb}{0,0.8,1} -\definecolor{blau}{rgb}{0,0.6,0} -\def\s{1.1} - -\begin{scope}[xshift=-4.6cm] - - \fill[color=blue!20] (0,0) rectangle (2,2); - \fill[color=red!40,opacity=0.5] (0,0) -- (2,\s) -- (2,{2+\s}) -- (0,2) - -- cycle; - - \foreach \x in {-1,...,3}{ - \draw[color=blau] (\x,-1) -- (\x,3); - \draw[color=blau] (-1,\x) -- (3,\x); - } - - \begin{scope} - \clip (-1,-1) rectangle (3,3); - \foreach \x in {-1,...,3}{ - \draw[color=orange] (\x,-1) -- (\x,3); - \draw[color=orange] (-1,{\x-0.5*\s}) -- (3,{\x+1.5*\s}); - } - \end{scope} - - \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}]; - \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}]; - - \node[color=blue] at (0,2) [above left] {$1$}; - \node[color=blue] at (2,0) [below right] {$1$}; - \draw[->,color=blue] (0,0) -- (2,0); - \draw[->,color=blue] (0,0) -- (0,2); - - \draw[->,color=red] (0,0) -- (2,\s); - \draw[->,color=red] (0,0) -- (0,2); - - \node[color=red] at (2,\s) [below right] {$(1,t)$}; - - \node at (0,0) [below right] {$O$}; - \node at (1,-1.1) [below] {$\displaystyle - \begin{aligned} - M &= \begin{pmatrix}0&0\\1&0 \end{pmatrix} - \\ - e^{Mt} - &= - \begin{pmatrix}1&0\\t&1 \end{pmatrix} - \end{aligned} - $}; -\end{scope} - -\begin{scope} - \fill[color=blue!20] (0,0) rectangle (2,2); - \fill[color=red!40,opacity=0.5] (0,0) -- (2,0) -- ({2+\s},2) -- (\s,2) - -- cycle; - - \foreach \x in {-1,...,3}{ - \draw[color=blau] (\x,-1) -- (\x,3); - \draw[color=blau] (-1,\x) -- (3,\x); - } - - \begin{scope} - \clip (-1,-1) rectangle (3,3); - \foreach \x in {-1,...,3}{ - \draw[color=orange] (-1,\x) -- (3,\x); - \draw[color=orange] ({\x-0.5*\s},-1) -- ({\x+1.5*\s},3); - } - \end{scope} - - \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}]; - \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}]; - - \node[color=blue] at (0,2) [above left] {$1$}; - \node[color=blue] at (2,0) [below right] {$1$}; - \draw[->,color=blue] (0,0) -- (2,0); - \draw[->,color=blue] (0,0) -- (0,2); - - \draw[->,color=red] (0,0) -- (2,0); - \draw[->,color=red] (0,0) -- (\s,2); - - \node[color=red] at (\s,2) [above left] {$(t,1)$}; - - \node at (0,0) [below right] {$O$}; - - \node at (1,-1.1) [below] {$\displaystyle - \begin{aligned} N &= \begin{pmatrix}0&1\\0&0 \end{pmatrix} - \\ - e^{Nt} - &= - \begin{pmatrix}1&t\\0&1 \end{pmatrix} - \end{aligned} - $}; -\end{scope} - -\begin{scope}[xshift=3.6cm,yshift=0cm] - \def\punkt#1#2{({1.6005*(#1)+0.4114*(#2)},{-0.2057*(#1)+0.5719*(#2)})} - \fill[color=blue!20] (0,0) rectangle (2,2); - \fill[color=red!40,opacity=0.5] - (0,0) -- \punkt{2}{0} -- \punkt{2}{2} -- \punkt{0}{2} -- cycle; - - \foreach \x in {0,...,4}{ - \draw[color=blau] (\x,-1) -- (\x,3); - } - \foreach \y in {-1,...,3}{ - \draw[color=blau] (0,\y) -- (4,\y); - } - - \begin{scope} - \clip (-0,-1) rectangle (4,3); - \foreach \x in {-1,...,6}{ - \draw[color=orange] \punkt{\x}{-3} -- \punkt{\x}{6}; - \draw[color=orange] \punkt{-3}{\x} -- \punkt{6}{\x}; - } - \end{scope} - - \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}]; - \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}]; - - \node[color=blue] at (0,2) [above left] {$1$}; - \node[color=blue] at (2,0) [below right] {$1$}; - \draw[->,color=blue] (0,0) -- (2,0); - \draw[->,color=blue] (0,0) -- (0,2); - - \draw[->,color=red] (0,0) -- \punkt{2}{0}; - \draw[->,color=red] (0,0) -- \punkt{0}{2}; - - \node at (0,0) [below right] {$O$}; - - \node at (2,-1.1) [below] {$\displaystyle - \begin{aligned} D &= \begin{pmatrix}0.5&0.4\\-0.2&-0.5 \end{pmatrix} - \\ - e^{D\cdot 1} - &= - \begin{pmatrix} - 1.6005 & 0.4114\\ - -0.2057 & 0.5719 - \end{pmatrix} - \end{aligned} - $}; -\end{scope} - -\end{tikzpicture} -\end{document} - +%
+% scherungen.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{blau}{rgb}{0,0.8,1}
+\definecolor{blau}{rgb}{0,0.6,0}
+\def\s{1.1}
+
+\begin{scope}[xshift=-4.6cm]
+
+ \fill[color=blue!20] (0,0) rectangle (2,2);
+ \fill[color=red!40,opacity=0.5] (0,0) -- (2,\s) -- (2,{2+\s}) -- (0,2)
+ -- cycle;
+
+ \foreach \x in {-1,...,3}{
+ \draw[color=blau] (\x,-1) -- (\x,3);
+ \draw[color=blau] (-1,\x) -- (3,\x);
+ }
+
+ \begin{scope}
+ \clip (-1,-1) rectangle (3,3);
+ \foreach \x in {-1,...,3}{
+ \draw[color=orange] (\x,-1) -- (\x,3);
+ \draw[color=orange] (-1,{\x-0.5*\s}) -- (3,{\x+1.5*\s});
+ }
+ \end{scope}
+
+ \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
+
+ \node[color=blue] at (0,2) [above left] {$1$};
+ \node[color=blue] at (2,0) [below right] {$1$};
+ \draw[->,color=blue] (0,0) -- (2,0);
+ \draw[->,color=blue] (0,0) -- (0,2);
+
+ \draw[->,color=red] (0,0) -- (2,\s);
+ \draw[->,color=red] (0,0) -- (0,2);
+
+ \node[color=red] at (2,\s) [below right] {$(1,t)$};
+
+ \node at (0,0) [below right] {$O$};
+ \node at (1,-1.1) [below] {$\displaystyle
+ \begin{aligned}
+ M &= \begin{pmatrix}0&0\\1&0 \end{pmatrix}
+ \\
+ e^{Mt}
+ &=
+ \begin{pmatrix}1&0\\t&1 \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\begin{scope}
+ \fill[color=blue!20] (0,0) rectangle (2,2);
+ \fill[color=red!40,opacity=0.5] (0,0) -- (2,0) -- ({2+\s},2) -- (\s,2)
+ -- cycle;
+
+ \foreach \x in {-1,...,3}{
+ \draw[color=blau] (\x,-1) -- (\x,3);
+ \draw[color=blau] (-1,\x) -- (3,\x);
+ }
+
+ \begin{scope}
+ \clip (-1,-1) rectangle (3,3);
+ \foreach \x in {-1,...,3}{
+ \draw[color=orange] (-1,\x) -- (3,\x);
+ \draw[color=orange] ({\x-0.5*\s},-1) -- ({\x+1.5*\s},3);
+ }
+ \end{scope}
+
+ \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
+
+ \node[color=blue] at (0,2) [above left] {$1$};
+ \node[color=blue] at (2,0) [below right] {$1$};
+ \draw[->,color=blue] (0,0) -- (2,0);
+ \draw[->,color=blue] (0,0) -- (0,2);
+
+ \draw[->,color=red] (0,0) -- (2,0);
+ \draw[->,color=red] (0,0) -- (\s,2);
+
+ \node[color=red] at (\s,2) [above left] {$(t,1)$};
+
+ \node at (0,0) [below right] {$O$};
+
+ \node at (1,-1.1) [below] {$\displaystyle
+ \begin{aligned} N &= \begin{pmatrix}0&1\\0&0 \end{pmatrix}
+ \\
+ e^{Nt}
+ &=
+ \begin{pmatrix}1&t\\0&1 \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\begin{scope}[xshift=3.6cm,yshift=0cm]
+ \def\punkt#1#2{({1.6005*(#1)+0.4114*(#2)},{-0.2057*(#1)+0.5719*(#2)})}
+ \fill[color=blue!20] (0,0) rectangle (2,2);
+ \fill[color=red!40,opacity=0.5]
+ (0,0) -- \punkt{2}{0} -- \punkt{2}{2} -- \punkt{0}{2} -- cycle;
+
+ \foreach \x in {0,...,4}{
+ \draw[color=blau] (\x,-1) -- (\x,3);
+ }
+ \foreach \y in {-1,...,3}{
+ \draw[color=blau] (0,\y) -- (4,\y);
+ }
+
+ \begin{scope}
+ \clip (-0,-1) rectangle (4,3);
+ \foreach \x in {-1,...,6}{
+ \draw[color=orange] \punkt{\x}{-3} -- \punkt{\x}{6};
+ \draw[color=orange] \punkt{-3}{\x} -- \punkt{6}{\x};
+ }
+ \end{scope}
+
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
+
+ \node[color=blue] at (0,2) [above left] {$1$};
+ \node[color=blue] at (2,0) [below right] {$1$};
+ \draw[->,color=blue] (0,0) -- (2,0);
+ \draw[->,color=blue] (0,0) -- (0,2);
+
+ \draw[->,color=red] (0,0) -- \punkt{2}{0};
+ \draw[->,color=red] (0,0) -- \punkt{0}{2};
+
+ \node at (0,0) [below right] {$O$};
+
+ \node at (2,-1.1) [below] {$\displaystyle
+ \begin{aligned} D &= \begin{pmatrix}0.5&0.4\\-0.2&-0.5 \end{pmatrix}
+ \\
+ e^{D\cdot 1}
+ &=
+ \begin{pmatrix}
+ 1.6005 & 0.4114\\
+ -0.2057 & 0.5719
+ \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/sl2.tex b/buch/chapters/60-gruppen/images/sl2.tex index 0e44aa9..c41308c 100644 --- a/buch/chapters/60-gruppen/images/sl2.tex +++ b/buch/chapters/60-gruppen/images/sl2.tex @@ -1,146 +1,146 @@ -% -% sl2.tex -- template for standalon tikz images -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\definecolor{darkgreen}{rgb}{0,0.6,0} - -\begin{scope}[xshift=-4.5cm] - \fill[color=blue!20] - (1.4,0) -- (0,1.4) -- (-1.4,0) -- (0,-1.4) -- cycle; - \fill[color=red!40,opacity=0.5] - (1.96,0) -- (0,1) -- (-1.96,0) -- (0,-1) -- cycle; - - \begin{scope} - \clip (-2.1,-2.1) rectangle (2.3,2.3); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] - ({(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)}); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] - ({(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)}); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] - ({-(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)}); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] - ({-(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)}); - \end{scope} - - \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; - \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; - - \draw[->,color=blue] (0,0) -- (1.4,0); - \draw[->,color=blue] (0,0) -- (0,1.4); - - \draw[->,color=red] (0,0) -- (1.96,0); - \draw[->,color=red] (0,0) -- (0,1); - \node at (0,-3.2) - {$\displaystyle - \begin{aligned} - A&=\begin{pmatrix}1&0\\0&-1\end{pmatrix} - \\ - e^{At} - &=\begin{pmatrix}e^t&0\\0&e^{-t}\end{pmatrix} - \end{aligned} - $}; - -\end{scope} - - -\begin{scope} - \fill[color=blue!20] - (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle; - \fill[color=red!40,opacity=0.5] - (33:1.4) -- (123:1.4) -- (213:1.4) -- (303:1.4) -- cycle; - - \draw[color=darkgreen] (0,0) circle[radius=1.4]; - - \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; - \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; - - \draw[->,color=blue] (0,0) -- (1.4,0); - \draw[->,color=blue] (0,0) -- (0,1.4); - - \draw[->,color=red] (0,0) -- (33:1.4); - \draw[->,color=red] (0,0) -- (123:1.4); - - \node at (0,-3.2) - {$\displaystyle - \begin{aligned} - B - &=\begin{pmatrix}0&-1\\1&0 \end{pmatrix} - \\ - e^{Bt} - &= - \begin{pmatrix} - \cos t&-\sin t\\ - \sin t& \cos t - \end{pmatrix} - \end{aligned}$}; -\end{scope} - - -\begin{scope}[xshift=4.5cm] - \fill[color=blue!20] - (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle; - \def\x{0.5} - \fill[color=red!40,opacity=0.5] - ({1.4*cosh(\x)},{1.4*sinh(\x}) - -- - ({1.4*sinh(\x},{1.4*cosh(\x)}) - -- - ({-1.4*cosh(\x)},{-1.4*sinh(\x}) - -- - ({-1.4*sinh(\x},{-1.4*cosh(\x)}) - -- cycle; - - \begin{scope} - \clip (-2.1,-2.1) rectangle (2.2,2.2); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] ({1.4*cosh(\x)},{1.4*sinh(\x)}); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{1.4*cosh(\x)}); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] ({-1.4*cosh(\x)},{1.4*sinh(\x)}); - \draw[color=darkgreen] - plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{-1.4*cosh(\x)}); - \end{scope} - - \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; - \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; - - \draw[->,color=blue] (0,0) -- (1.4,0); - \draw[->,color=blue] (0,0) -- (0,1.4); - - \draw[->,color=red] (0,0) -- ({1.4*cosh(\x)},{1.4*sinh(\x)}); - \draw[->,color=red] (0,0) -- ({1.4*sinh(\x)},{1.4*cosh(\x)}); - - \node at (0,-3.2) {$\displaystyle - \begin{aligned} - C&=\begin{pmatrix}0&1\\1&0\end{pmatrix} - \\ - e^{Ct} - &= - \begin{pmatrix} - \cosh t&\sinh t\\ - \sinh t&\cosh t - \end{pmatrix} - \end{aligned} - $}; -\end{scope} - -\end{tikzpicture} -\end{document} - +%
+% sl2.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\begin{scope}[xshift=-4.5cm]
+ \fill[color=blue!20]
+ (1.4,0) -- (0,1.4) -- (-1.4,0) -- (0,-1.4) -- cycle;
+ \fill[color=red!40,opacity=0.5]
+ (1.96,0) -- (0,1) -- (-1.96,0) -- (0,-1) -- cycle;
+
+ \begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({-(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({-(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)});
+ \end{scope}
+
+ \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \draw[->,color=blue] (0,0) -- (1.4,0);
+ \draw[->,color=blue] (0,0) -- (0,1.4);
+
+ \draw[->,color=red] (0,0) -- (1.96,0);
+ \draw[->,color=red] (0,0) -- (0,1);
+ \node at (0,-3.2)
+ {$\displaystyle
+ \begin{aligned}
+ A&=\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+ \\
+ e^{At}
+ &=\begin{pmatrix}e^t&0\\0&e^{-t}\end{pmatrix}
+ \end{aligned}
+ $};
+
+\end{scope}
+
+
+\begin{scope}
+ \fill[color=blue!20]
+ (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle;
+ \fill[color=red!40,opacity=0.5]
+ (33:1.4) -- (123:1.4) -- (213:1.4) -- (303:1.4) -- cycle;
+
+ \draw[color=darkgreen] (0,0) circle[radius=1.4];
+
+ \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \draw[->,color=blue] (0,0) -- (1.4,0);
+ \draw[->,color=blue] (0,0) -- (0,1.4);
+
+ \draw[->,color=red] (0,0) -- (33:1.4);
+ \draw[->,color=red] (0,0) -- (123:1.4);
+
+ \node at (0,-3.2)
+ {$\displaystyle
+ \begin{aligned}
+ B
+ &=\begin{pmatrix}0&-1\\1&0 \end{pmatrix}
+ \\
+ e^{Bt}
+ &=
+ \begin{pmatrix}
+ \cos t&-\sin t\\
+ \sin t& \cos t
+ \end{pmatrix}
+ \end{aligned}$};
+\end{scope}
+
+
+\begin{scope}[xshift=4.5cm]
+ \fill[color=blue!20]
+ (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle;
+ \def\x{0.5}
+ \fill[color=red!40,opacity=0.5]
+ ({1.4*cosh(\x)},{1.4*sinh(\x})
+ --
+ ({1.4*sinh(\x},{1.4*cosh(\x)})
+ --
+ ({-1.4*cosh(\x)},{-1.4*sinh(\x})
+ --
+ ({-1.4*sinh(\x},{-1.4*cosh(\x)})
+ -- cycle;
+
+ \begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.2,2.2);
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({1.4*cosh(\x)},{1.4*sinh(\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{1.4*cosh(\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({-1.4*cosh(\x)},{1.4*sinh(\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{-1.4*cosh(\x)});
+ \end{scope}
+
+ \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \draw[->,color=blue] (0,0) -- (1.4,0);
+ \draw[->,color=blue] (0,0) -- (0,1.4);
+
+ \draw[->,color=red] (0,0) -- ({1.4*cosh(\x)},{1.4*sinh(\x)});
+ \draw[->,color=red] (0,0) -- ({1.4*sinh(\x)},{1.4*cosh(\x)});
+
+ \node at (0,-3.2) {$\displaystyle
+ \begin{aligned}
+ C&=\begin{pmatrix}0&1\\1&0\end{pmatrix}
+ \\
+ e^{Ct}
+ &=
+ \begin{pmatrix}
+ \cosh t&\sinh t\\
+ \sinh t&\cosh t
+ \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/torus.pov b/buch/chapters/60-gruppen/images/torus.pov index 3a8e327..ee09c36 100644 --- a/buch/chapters/60-gruppen/images/torus.pov +++ b/buch/chapters/60-gruppen/images/torus.pov @@ -1,189 +1,189 @@ -// -// diffusion.pov -// -// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule -// -#version 3.7; -#include "colors.inc" - -global_settings { - assumed_gamma 1 -} - -#declare imagescale = 0.034; -#declare N = 100; -#declare r = 0.43; -#declare R = 1; - -camera { - location <43, 25, -20> - look_at <0, -0.01, 0> - right 16/9 * x * imagescale - up y * imagescale -} - -light_source { - <10, 20, -40> color White - area_light <1,0,0> <0,0,1>, 10, 10 - adaptive 1 - jitter -} - -sky_sphere { - pigment { - color rgb<1,1,1> - } -} - -#macro rotiere(phi, vv) - < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z > -#end - -#macro punkt(phi,theta) - rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >) -#end - -mesh { - #declare phistep = 2 * pi / N; - #declare thetastep = 2 * 2 * pi / N; - #declare phi = 0; - #while (phi < 2 * pi - phistep/2) - #declare theta = 0; - #while (theta < 2 * pi - thetastep/2) - triangle { - punkt(phi , theta ), - punkt(phi + phistep, theta ), - punkt(phi + phistep, theta + thetastep) - } - triangle { - punkt(phi , theta ), - punkt(phi + phistep, theta + thetastep), - punkt(phi , theta + thetastep) - } - #declare theta = theta + thetastep; - #end - #declare phi = phi + phistep; - #end - pigment { - color Gray - } - finish { - specular 0.9 - metallic - } -} - -#declare thetastart = -0.2; -#declare thetaend = 1.2; -#declare phistart = 5; -#declare phiend = 6; - -union { - #declare thetastep = 0.2; - #declare theta = thetastart; - #while (theta < thetaend + thetastep/2) - #declare phistep = (phiend-phistart)/N; - #declare phi = phistart; - #while (phi < phiend - phistep/2) - sphere { punkt(phi,theta), 0.01 } - cylinder { - punkt(phi,theta), - punkt(phi+phistep,theta), - 0.01 - } - #declare phi = phi + phistep; - #end - sphere { punkt(phi,theta), 0.01 } - #declare theta = theta + thetastep; - #end - - pigment { - color Red - } - finish { - specular 0.9 - metallic - } -} - -union { - #declare phistep = 0.2; - #declare phi = phistart; - #while (phi < phiend + phistep/2) - #declare thetastep = (thetaend-thetastart)/N; - #declare theta = thetastart; - #while (theta < thetaend - thetastep/2) - sphere { punkt(phi,theta), 0.01 } - cylinder { - punkt(phi,theta), - punkt(phi,theta+thetastep), - 0.01 - } - #declare theta = theta + thetastep; - #end - sphere { punkt(phi,theta), 0.01 } - #declare phi = phi + phistep; - #end - pigment { - color Blue - } - finish { - specular 0.9 - metallic - } -} - -#macro punkt2(a,b) - punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2) -#end - -#declare darkgreen = rgb<0,0.6,0>; - -#declare astart = 0; -#declare aend = 1; -#declare bstart = -0.2; -#declare bend = 1.2; -union { - #declare a = astart; - #declare astep = 0.2; - #while (a < aend + astep/2) - #declare b = bstart; - #declare bstep = (bend - bstart)/N; - #while (b < bend - bstep/2) - sphere { punkt2(a,b), 0.01 } - cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 } - #declare b = b + bstep; - #end - sphere { punkt2(a,b), 0.01 } - #declare a = a + astep; - #end - pigment { - color darkgreen - } - finish { - specular 0.9 - metallic - } -} -union { - #declare b = bstart; - #declare bstep = 0.2; - #while (b < bend + bstep/2) - #declare a = astart; - #declare astep = (aend - astart)/N; - #while (a < aend - astep/2) - sphere { punkt2(a,b), 0.01 } - cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 } - #declare a = a + astep; - #end - sphere { punkt2(a,b), 0.01 } - #declare b = b + bstep; - #end - pigment { - color Orange - } - finish { - specular 0.9 - metallic - } -} +//
+// diffusion.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.034;
+#declare N = 100;
+#declare r = 0.43;
+#declare R = 1;
+
+camera {
+ location <43, 25, -20>
+ look_at <0, -0.01, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <10, 20, -40> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro rotiere(phi, vv)
+ < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z >
+#end
+
+#macro punkt(phi,theta)
+ rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >)
+#end
+
+mesh {
+ #declare phistep = 2 * pi / N;
+ #declare thetastep = 2 * 2 * pi / N;
+ #declare phi = 0;
+ #while (phi < 2 * pi - phistep/2)
+ #declare theta = 0;
+ #while (theta < 2 * pi - thetastep/2)
+ triangle {
+ punkt(phi , theta ),
+ punkt(phi + phistep, theta ),
+ punkt(phi + phistep, theta + thetastep)
+ }
+ triangle {
+ punkt(phi , theta ),
+ punkt(phi + phistep, theta + thetastep),
+ punkt(phi , theta + thetastep)
+ }
+ #declare theta = theta + thetastep;
+ #end
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Gray
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#declare thetastart = -0.2;
+#declare thetaend = 1.2;
+#declare phistart = 5;
+#declare phiend = 6;
+
+union {
+ #declare thetastep = 0.2;
+ #declare theta = thetastart;
+ #while (theta < thetaend + thetastep/2)
+ #declare phistep = (phiend-phistart)/N;
+ #declare phi = phistart;
+ #while (phi < phiend - phistep/2)
+ sphere { punkt(phi,theta), 0.01 }
+ cylinder {
+ punkt(phi,theta),
+ punkt(phi+phistep,theta),
+ 0.01
+ }
+ #declare phi = phi + phistep;
+ #end
+ sphere { punkt(phi,theta), 0.01 }
+ #declare theta = theta + thetastep;
+ #end
+
+ pigment {
+ color Red
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ #declare phistep = 0.2;
+ #declare phi = phistart;
+ #while (phi < phiend + phistep/2)
+ #declare thetastep = (thetaend-thetastart)/N;
+ #declare theta = thetastart;
+ #while (theta < thetaend - thetastep/2)
+ sphere { punkt(phi,theta), 0.01 }
+ cylinder {
+ punkt(phi,theta),
+ punkt(phi,theta+thetastep),
+ 0.01
+ }
+ #declare theta = theta + thetastep;
+ #end
+ sphere { punkt(phi,theta), 0.01 }
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Blue
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#macro punkt2(a,b)
+ punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2)
+#end
+
+#declare darkgreen = rgb<0,0.6,0>;
+
+#declare astart = 0;
+#declare aend = 1;
+#declare bstart = -0.2;
+#declare bend = 1.2;
+union {
+ #declare a = astart;
+ #declare astep = 0.2;
+ #while (a < aend + astep/2)
+ #declare b = bstart;
+ #declare bstep = (bend - bstart)/N;
+ #while (b < bend - bstep/2)
+ sphere { punkt2(a,b), 0.01 }
+ cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 }
+ #declare b = b + bstep;
+ #end
+ sphere { punkt2(a,b), 0.01 }
+ #declare a = a + astep;
+ #end
+ pigment {
+ color darkgreen
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+union {
+ #declare b = bstart;
+ #declare bstep = 0.2;
+ #while (b < bend + bstep/2)
+ #declare a = astart;
+ #declare astep = (aend - astart)/N;
+ #while (a < aend - astep/2)
+ sphere { punkt2(a,b), 0.01 }
+ cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 }
+ #declare a = a + astep;
+ #end
+ sphere { punkt2(a,b), 0.01 }
+ #declare b = b + bstep;
+ #end
+ pigment {
+ color Orange
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex index cee8510..482ba6f 100644 --- a/buch/chapters/60-gruppen/lie-algebren.tex +++ b/buch/chapters/60-gruppen/lie-algebren.tex @@ -1,647 +1,647 @@ -% -% lie-algebren.tex -- Lie-Algebren -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Lie-Algebren -\label{buch:section:lie-algebren}} -\rhead{Lie-Algebren} -Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen -Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen -Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können. -Die Gruppen haben damit nicht nur die algebraische Struktur einer -Matrixgruppe, sie haben auch die geometrische Struktur einer -Mannigfaltigkeit. -Insbesondere ist es sinnvoll, von Ableitungen zu sprechen. - -Eindimensionale Untergruppen einer Gruppe können auch als Kurven -innerhalb der Gruppe angesehen werden. -In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen -Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass -der Vektor als Tangentialvektor an diese Kurve gelten kann. -Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren -erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren, -die sogenannte Lie-Algebra. -Sie ist charakteristisch für die Gruppe. -Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$ -und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die -Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$ -übereinstimmt. - -% -% Die Lie-Algebra einer Matrizengruppe -% -\subsection{Lie-Algebra einer Matrizengruppe -\label{buch:section:lie-algebra-einer-matrizengruppe}} -Zu jedem Tangentialvektor $A$ im Punkt $I$ einer Matrizengruppe gibt es -eine Einparameteruntergruppe, die mit Hilfe der Exponentialfunktion -$e^{At}$ konstruiert werden kann. -Für die folgende Konstruktion arbeiten wir in der Gruppe -$\operatorname{GL}_n(\mathbb{R})$, in der jede Matrix auch ein -Tangentialvektor ist. -Wir werden daraus die Lie-Klammer ableiten und später verifizieren, -dass diese auch für die Tangentialvektoren der Gruppen -$\operatorname{SO}(n)$ oder $\operatorname{SL}_n(\mathbb{R})$ funktioniert. - -\subsubsection{Lie-Klammer} -Zu zwei verschiedenen Tagentialvektoren $A\in M_n(\mathbb{R})$ und -$B\in M_n(\mathbb{R})$ gibt es zwei verschiedene Einparameteruntergruppen -$e^{At}$ und $e^{Bt}$. -Wenn die Matrizen $A$ und $B$ oder die Einparameteruntergruppen -$e^{At}$ und $e^{Bt}$ vertauschbar sind, dann stimmen -$e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ nicht überein. -Die zugehörigen Potenzreihen sind: -\begin{align*} -e^{At} -&= -I+At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots -\\ -e^{Bt} -&= -I+Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots -\\ -e^{At}e^{Bt} -&= -\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr) -\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr) -\\ -&= -I+(A+B)t + \biggl(\frac{A^2}{2!}+AB+\frac{B^2}{2!}\biggr)t^2 +\dots -\\ -e^{Bt}e^{At} -&= -\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr) -\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr) -\\ -&= -I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots -\intertext{% -Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen -Tangentialvektor für $t=0$, sie unterscheiden -sich aber untereinander, und sie unterscheiden sich von der -Einparameteruntergruppe von $A+B$} -e^{(A+B)t} -&= -I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots -\intertext{Für die Unterschiede finden wir} -e^{At}e^{Bt} - e^{(A+B)t} -&= -\biggl(AB-\frac{AB+BA}2\biggr)t^2 -+\ldots -= -(AB-BA) \frac{t^2}{2} + \ldots -= -[A,B]\frac{t^2}{2}+\ldots -\\ -e^{Bt}e^{At} - e^{(A+B)t} -&= -\biggl(BA-\frac{AB+BA}2\biggr)t^2 -+\ldots -= -(BA-AB) -\frac{t^2}{2} -+\ldots -= --[A,B]\frac{t^2}{2} -\\ -e^{At}e^{Bt}-e^{Bt}e^{At} -&= -(AB-BA)t^2+\ldots -= -\phantom{-}[A,B]t^2+\ldots -\end{align*} -wobei mit $[A,B]=AB-BA$ abgekürzt wird. - -\begin{definition} -\label{buch:gruppen:def:kommutator} -Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix -$[A,B]=AB-BA$. -\end{definition} - -Der Kommutator ist bilinear und antisymmetrisch, da -\begin{align*} -[\lambda A+\mu B,C] -&= -\lambda AC+\mu BC-\lambda CA -\mu CB -= -\lambda[A,C]+\mu[B,C] -\\ -[A,\lambda B+\mu C] -&= -\lambda AB + \mu AC - \lambda BA - \mu CA -= -\lambda[A,B]+\mu[A,C] -\\ -[A,B] -&= -AB-BA = -(BA-AB) = -[B,A]. -\end{align*} -Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$ - -Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied -zwischen den $e^{At}$ und $e^{Bt}$. -Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die -Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab. - - -\subsubsection{Die Jacobi-Identität} -Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft: -\begin{align*} -[A,[B,C]] -+ -[B,[C,A]] -+ -[C,[A,B]] -&= -[A,BC-CB] -+ -[B,CA-AC] -+ -[C,AB-BA] -\\ -&=\phantom{+} -ABC-ACB-BCA+CBA -\\ -&\phantom{=}+ -BCA-BAC-CAB+ACB -\\ -&\phantom{=}+ -CAB-CBA-ABC+BAC -\\ -&=0. -\end{align*} -Diese Eigenschaft findet man auch bei anderen Strukturen, zum Beispiel -bei Vektorfeldern, die man als Differentialoperatoren auf Funktionen -betrachten kann. -Man kann dann einen Kommutator $[X,Y]$ für zwei Vektorfelder -$X$ und $Y$ definieren. -Dieser Kommutator von Vektorfeldern erfüllt ebenfalls die gleiche -Identität. - -\begin{definition} -\label{buch:gruppen:def:jacobi} -Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum -erfüllt die {\em Jacobi-Identität}, wenn -\[ -[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0 -\] -ist für beliebige Vektoren $u,v,w\in V$. -\end{definition} - -\subsubsection{Lie-Algebra} -Die Tangentialvektoren einer Lie-Gruppe tragen also mit dem Kommutator -eine zusätzliche Struktur, nämlich die Struktur einer Lie-Algebra. - -\begin{definition} -Ein Vektorraum $V$ mit einem bilinearen, Produkt -\[ -[\;,\;]\colon V\times V \to V : (u,v) \mapsto [u,v], -\] -welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi} -erfüllt, heisst eine {\em Lie-Algebra}. -\end{definition} - -Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet. -$LG$ besteht aus den Tangentialvektoren im Punkt $I$. -Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$ -ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$. -Insbesondere kann die Inverse der Exponentialabbildung als eine -Karte in einer Umgebung von $I$ verwendet werden. - -Für die Lie-Algebren der Matrizengruppen, die früher definiert worden -sind, verwenden wir die als Notationskonvention, dass der Name der -Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist. -Die Lie-Algebra von $\operatorname{SO}(n)$ ist also -$L\operatorname{SO}(n) = \operatorname{os}(n)$, -die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist -$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$. - - -% -% Die Lie-Algebra von SO(3) -% -\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$ -\label{buch:subsection:die-lie-algebra-von-so3}} -Zur Gruppe $\operatorname{SO}(3)$ der Drehmatrizen gehört die Lie-Algebra -$\operatorname{so}(3)$ der antisymmetrischen $3\times 3$-Matrizen. -Solche Matrizen haben die Form -\[ -\Omega -= -\begin{pmatrix} - 0 & \omega_3&-\omega_2\\ --\omega_3& 0 & \omega_1\\ - \omega_2&-\omega_1& 0 -\end{pmatrix} -\] -Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional. - -Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist -\[ -(I+t\Omega) -\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} -= -\begin{pmatrix} - 1 & t\omega_3&-t\omega_2\\ --t\omega_3& 1 & t\omega_1\\ - t\omega_2&-t\omega_1& 1 -\end{pmatrix} -\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} -= -\begin{pmatrix} -x_1-t(-\omega_3x_2+\omega_2x_3)\\ -x_2-t( \omega_3x_1-\omega_1x_3)\\ -x_3-t(-\omega_2x_1+\omega_1x_2) -\end{pmatrix} -= -x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x -= -x+ tx\times \omega. -\] -Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung -um die Achse $\omega$. - -Wir können die Analogie zwischen Matrizen in $\operatorname{so}(3)$ und -Vektoren in $\mathbb R^3$ noch etwas weiter treiben. Zu jedem Vektor -in $\mathbb R^3$ konstruieren wir eine Matrix in $\operatorname{so}(3)$ -mit Hilfe der Abbildung -\[ -\mathbb R^3\to\operatorname{so}(3) -: -\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} -\mapsto -\begin{pmatrix} - 0 & v_3&-v_1\\ --v_3& 0 & v_2\\ - v_1&-v_2& 0 -\end{pmatrix}. -\] -Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$ -konstruierten Matrizen $U$ und $V$ ist: -\begin{align*} -[U,V] -&= -UV-VU -\\ -&= -\begin{pmatrix} - 0 & u_3&-u_1\\ --u_3& 0 & u_2\\ - u_1&-u_2& 0 -\end{pmatrix} -\begin{pmatrix} - 0 & v_3&-v_1\\ --v_3& 0 & v_2\\ - v_1&-v_2& 0 -\end{pmatrix} -- -\begin{pmatrix} - 0 & v_3&-v_1\\ --v_3& 0 & v_2\\ - v_1&-v_2& 0 -\end{pmatrix} -\begin{pmatrix} - 0 & u_3&-u_1\\ --u_3& 0 & u_2\\ - u_1&-u_2& 0 -\end{pmatrix} -\\ -&= -\begin{pmatrix} -u_3v_3+u_1v_1 - u_3v_3 - u_1v_1 - & u_1v_2 - u_2v_1 - & u_3v_2 - u_2v_3 -\\ -u_2v_1 - u_1v_2 - & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2 - & u_3v_1 - u_1v_3 -\\ -u_2v_3 - u_3v_2 - & u_1v_3 - u_3v_1 - &-u_1v_1-u_2v_2 u_1v_1+u_2v_2 -\end{pmatrix} -\\ -&= -\begin{pmatrix} -0 - & u_1v_2 - u_2v_1 - &-(u_2v_3-u_3v_2) -\\ --( u_1v_2 - u_2v_1) - & 0 - & u_3v_1 - u_1v_3 -\\ -u_2v_3 - u_3v_2 - &-( u_3v_1 - u_1v_3) - & 0 -\end{pmatrix} -\end{align*} -Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$. -Damit können wir aus der Jacobi-Identität jetzt folgern, dass -\[ -\vec u\times(\vec v\times w) -+ -\vec v\times(\vec w\times u) -+ -\vec w\times(\vec u\times v) -=0 -\] -für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist. -Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$ -mit dem Vektorprodukt zu einer Lie-Algebra wird. -In der Tat verwenden einige Bücher statt der vertrauten Notation -$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der -Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel -das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1} -von Landau und Lifschitz. - -Die Lie-Algebren sind vollständig klassifiziert worden, es gibt -keine nicht trivialen zweidimensionalen Lie-Algebren. -Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell: -es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur -möglich ist. - -Die antisymmetrischen Matrizen -\[ -\omega_{23} -= -\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix} -\quad -\omega_{31} -= -\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix} -\quad -\omega_{12} -= -\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix} -\] -haben die Kommutatoren -\begin{equation} -\begin{aligned} -[\omega_{23},\omega_{31}] -&= -\begin{pmatrix} -0&0&0\\ -0&0&1\\ -0&-1&0 -\end{pmatrix} -= -\omega_{12} -\\ -[\omega_{31},\omega_{12}] -&= -\begin{pmatrix} -0&1&0\\ --1&0&0\\ -0&0&0 -\end{pmatrix} -= -\omega_{23} -\\ -[\omega_{12},\omega_{23}] -&= -\begin{pmatrix} -0&0&-1\\ -0&0&0\\ -1&0&0 -\end{pmatrix} -= -\omega_{31} -\end{aligned} -\label{buch:gruppen:eqn:so3-kommutatoren} -\end{equation} - -\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$} -Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den -spurlosen Matrizen in $M_n(\mathbb{R})$. -Der Kommutator solcher Matrizen erfüllt -\[ -\operatorname{Spur}([A,B]) -= -\operatorname{Spur}(AB-BA) -= -\operatorname{Spur}(AB)-\operatorname{Spur}(BA) -= -0, -\] -somit ist -\[ -\operatorname{sl}_n(\mathbb{R}) -= -\{ -A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}(A)=0 -\} -\] -mit dem Kommutator eine Lie-Algebra. - -% -% Die Lie-Algebra von U(n) -% -\subsection{Die Lie-Algebra von $\operatorname{U}(n)$} -Die Lie-Gruppe -\[ -U(n) -= -\{ -A\in M_n(\mathbb{C} -\;|\; -AA^*=I -\} -\] -heisst die unitäre Gruppe, sie besteht aus den Matrizen, die -das sesquilineare Standardskalarprodukt auf dem komplexen -Vektorraum $\mathbb{C}^n$ invariant lassen. -Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$ -derart, dass $\gamma(0)=I$. -Die Ableitung der Identität $AA^*=I$ führt dann auf -\begin{align*} -0 -= -\frac{d}{dt} -\gamma(t)\gamma(t)^* -\bigg|_{t=0} -= -\dot{\gamma}(0)\gamma(0)^* -+ -\gamma(0)\dot{\gamma}(0)^* -= -\dot{\gamma}(0) -+ -\dot{\gamma}(0)^* -\quad\Rightarrow\quad -\dot{\gamma}(0)&=-\dot{\gamma}(0)^*. -A&=-A^* -\end{align*} -Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen -Matrizen. - -Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen -Matrizen wieder anithermitesch ist: -\begin{align*} -[A,B]^* -&= -(AB-BA)^* -= -B^*A^*-A^*B^* -= -BA - AB -= --[B,A]. -\end{align*} - -Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$, -für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$ -oder $\overline{a}_{ii}=-a_{ii}$. -Der Realteil von $a_{ii}$ ist -\[ -\Re a_{ii} -= -\frac{a_{ii}+\overline{a}_{ii}}2 -= -0, -\] -die Diagonalelemente einer antihermiteschen Matrix sind daher rein -imaginär. - - -% -% Die Lie-Algebra SU(2) -% -\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$} -Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den -spurlosen antihermiteschen Matrizen. -Sie erfüllen daher die folgenden Bedingungen: -\[ -A=\begin{pmatrix}a&b\\c&d\end{pmatrix} -\qquad -\text{mit} -\qquad -\left\{ -\begin{aligned} -a+d&=0&&\Rightarrow& a=is = -d -\\ -b^*&=-c -\end{aligned} -\right. -\] -Damit hat $A$ die Form -\begin{align*} -A=\begin{pmatrix} -is&u+iv\\ --u+iv&-is -\end{pmatrix} -&= -s -\begin{pmatrix} -i&0\\ -0&-i -\end{pmatrix} -+ -u -\begin{pmatrix} - 0&1\\ --1&0 -\end{pmatrix} -+ -v -\begin{pmatrix} -0&i\\ -i&0 -\end{pmatrix} -\\ -&= -iv\underbrace{\begin{pmatrix}0&1\\1&0\end{pmatrix}}_{\displaystyle=\sigma_1} -+ -iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2} -+ -is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3} -\end{align*} -Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren -\begin{align*} -[\sigma_1,\sigma_2] -&= -\begin{pmatrix}0&1\\1&0\end{pmatrix} -\begin{pmatrix}0&-i\\i&0\end{pmatrix} -- -\begin{pmatrix}0&-i\\i&0\end{pmatrix} -\begin{pmatrix}0&1\\1&0\end{pmatrix} -= -2\begin{pmatrix}i&0\\0&-i \end{pmatrix} -= -2i\sigma_3, -\\ -[\sigma_2,\sigma_3] -&= -\begin{pmatrix}0&-i\\i&0\end{pmatrix} -\begin{pmatrix}1&0\\0&-1\end{pmatrix} -- -\begin{pmatrix}1&0\\0&-1\end{pmatrix} -\begin{pmatrix}0&-i\\i&0\end{pmatrix} -= -2 -\begin{pmatrix}0&i\\i&0\end{pmatrix} -= -2i\sigma_1. -\\ -[\sigma_1,\sigma_3] -&= -\begin{pmatrix}0&1\\1&0\end{pmatrix} -\begin{pmatrix}1&0\\0&-1\end{pmatrix} -- -\begin{pmatrix}1&0\\0&-1\end{pmatrix} -\begin{pmatrix}0&1\\1&0\end{pmatrix} -= -2i -\begin{pmatrix}0&-1\\1&0\end{pmatrix} -= -2i\sigma_2, -\end{align*} -Bis auf eine Skalierung stimmt dies überein mit den Kommutatorprodukten -der Matrizen $\omega_{23}$, $\omega_{31}$ und $\omega_{12}$ -in \eqref{buch:gruppen:eqn:so3-kommutatoren}. -Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte -\begin{align*} -\bigl[-{\textstyle\frac12}i\sigma_1,-{\textstyle\frac12}i\sigma_2\bigr] -&= --{\textstyle\frac14}[\sigma_1,\sigma_2] -= --{\textstyle\frac14}\cdot 2i\sigma_3 -= --{\textstyle\frac12}i\sigma_3 -\\ -\bigl[-{\textstyle\frac12}i\sigma_2,-{\textstyle\frac12}i\sigma_3\bigr] -&= --{\textstyle\frac14}[\sigma_2,\sigma_3] -= --{\textstyle\frac14}\cdot 2i\sigma_1 -= --{\textstyle\frac12}i\sigma_1 -\\ -\bigl[-{\textstyle\frac12}i\sigma_3,-{\textstyle\frac12}i\sigma_1\bigr] -&= --{\textstyle\frac14}[\sigma_3,\sigma_1] -= --{\textstyle\frac14}\cdot 2i\sigma_2 -= --{\textstyle\frac12}i\sigma_2 -\end{align*} -Die lineare Abbildung, die -\begin{align*} -\omega_{23}&\mapsto -{\textstyle\frac12}i\sigma_1\\ -\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\ -\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3 -\end{align*} -abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$ -auf die Lie-Algebra $\operatorname{su}(2)$. -Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$ -haben also die gleiche Lie-Algebra. - -Tatsächlich kann man Hilfe von Quaternionen die Matrix $\operatorname{SU}(2)$ -als Einheitsquaternionen beschreiben und damit eine Darstellung der -Drehmatrizen in $\operatorname{SO}(3)$ finden. -Dies wird in Kapitel~\ref{chapter:clifford} dargestellt. - - - - - +%
+% lie-algebren.tex -- Lie-Algebren
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Lie-Algebren
+\label{buch:section:lie-algebren}}
+\rhead{Lie-Algebren}
+Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen
+Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen
+Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können.
+Die Gruppen haben damit nicht nur die algebraische Struktur einer
+Matrixgruppe, sie haben auch die geometrische Struktur einer
+Mannigfaltigkeit.
+Insbesondere ist es sinnvoll, von Ableitungen zu sprechen.
+
+Eindimensionale Untergruppen einer Gruppe können auch als Kurven
+innerhalb der Gruppe angesehen werden.
+In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen
+Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass
+der Vektor als Tangentialvektor an diese Kurve gelten kann.
+Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren
+erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren,
+die sogenannte Lie-Algebra.
+Sie ist charakteristisch für die Gruppe.
+Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$
+und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die
+Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$
+übereinstimmt.
+
+%
+% Die Lie-Algebra einer Matrizengruppe
+%
+\subsection{Lie-Algebra einer Matrizengruppe
+\label{buch:section:lie-algebra-einer-matrizengruppe}}
+Zu jedem Tangentialvektor $A$ im Punkt $I$ einer Matrizengruppe gibt es
+eine Einparameteruntergruppe, die mit Hilfe der Exponentialfunktion
+$e^{At}$ konstruiert werden kann.
+Für die folgende Konstruktion arbeiten wir in der Gruppe
+$\operatorname{GL}_n(\mathbb{R})$, in der jede Matrix auch ein
+Tangentialvektor ist.
+Wir werden daraus die Lie-Klammer ableiten und später verifizieren,
+dass diese auch für die Tangentialvektoren der Gruppen
+$\operatorname{SO}(n)$ oder $\operatorname{SL}_n(\mathbb{R})$ funktioniert.
+
+\subsubsection{Lie-Klammer}
+Zu zwei verschiedenen Tagentialvektoren $A\in M_n(\mathbb{R})$ und
+$B\in M_n(\mathbb{R})$ gibt es zwei verschiedene Einparameteruntergruppen
+$e^{At}$ und $e^{Bt}$.
+Wenn die Matrizen $A$ und $B$ oder die Einparameteruntergruppen
+$e^{At}$ und $e^{Bt}$ vertauschbar sind, dann stimmen
+$e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ nicht überein.
+Die zugehörigen Potenzreihen sind:
+\begin{align*}
+e^{At}
+&=
+I+At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots
+\\
+e^{Bt}
+&=
+I+Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots
+\\
+e^{At}e^{Bt}
+&=
+\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr)
+\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr)
+\\
+&=
+I+(A+B)t + \biggl(\frac{A^2}{2!}+AB+\frac{B^2}{2!}\biggr)t^2 +\dots
+\\
+e^{Bt}e^{At}
+&=
+\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr)
+\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr)
+\\
+&=
+I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots
+\intertext{%
+Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen
+Tangentialvektor für $t=0$, sie unterscheiden
+sich aber untereinander, und sie unterscheiden sich von der
+Einparameteruntergruppe von $A+B$}
+e^{(A+B)t}
+&=
+I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots
+\intertext{Für die Unterschiede finden wir}
+e^{At}e^{Bt} - e^{(A+B)t}
+&=
+\biggl(AB-\frac{AB+BA}2\biggr)t^2
++\ldots
+=
+(AB-BA) \frac{t^2}{2} + \ldots
+=
+[A,B]\frac{t^2}{2}+\ldots
+\\
+e^{Bt}e^{At} - e^{(A+B)t}
+&=
+\biggl(BA-\frac{AB+BA}2\biggr)t^2
++\ldots
+=
+(BA-AB)
+\frac{t^2}{2}
++\ldots
+=
+-[A,B]\frac{t^2}{2}
+\\
+e^{At}e^{Bt}-e^{Bt}e^{At}
+&=
+(AB-BA)t^2+\ldots
+=
+\phantom{-}[A,B]t^2+\ldots
+\end{align*}
+wobei mit $[A,B]=AB-BA$ abgekürzt wird.
+
+\begin{definition}
+\label{buch:gruppen:def:kommutator}
+Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix
+$[A,B]=AB-BA$.
+\end{definition}
+
+Der Kommutator ist bilinear und antisymmetrisch, da
+\begin{align*}
+[\lambda A+\mu B,C]
+&=
+\lambda AC+\mu BC-\lambda CA -\mu CB
+=
+\lambda[A,C]+\mu[B,C]
+\\
+[A,\lambda B+\mu C]
+&=
+\lambda AB + \mu AC - \lambda BA - \mu CA
+=
+\lambda[A,B]+\mu[A,C]
+\\
+[A,B]
+&=
+AB-BA = -(BA-AB) = -[B,A].
+\end{align*}
+Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$
+
+Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied
+zwischen den $e^{At}$ und $e^{Bt}$.
+Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die
+Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab.
+
+
+\subsubsection{Die Jacobi-Identität}
+Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft:
+\begin{align*}
+[A,[B,C]]
++
+[B,[C,A]]
++
+[C,[A,B]]
+&=
+[A,BC-CB]
++
+[B,CA-AC]
++
+[C,AB-BA]
+\\
+&=\phantom{+}
+ABC-ACB-BCA+CBA
+\\
+&\phantom{=}+
+BCA-BAC-CAB+ACB
+\\
+&\phantom{=}+
+CAB-CBA-ABC+BAC
+\\
+&=0.
+\end{align*}
+Diese Eigenschaft findet man auch bei anderen Strukturen, zum Beispiel
+bei Vektorfeldern, die man als Differentialoperatoren auf Funktionen
+betrachten kann.
+Man kann dann einen Kommutator $[X,Y]$ für zwei Vektorfelder
+$X$ und $Y$ definieren.
+Dieser Kommutator von Vektorfeldern erfüllt ebenfalls die gleiche
+Identität.
+
+\begin{definition}
+\label{buch:gruppen:def:jacobi}
+Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum
+erfüllt die {\em Jacobi-Identität}, wenn
+\[
+[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0
+\]
+ist für beliebige Vektoren $u,v,w\in V$.
+\end{definition}
+
+\subsubsection{Lie-Algebra}
+Die Tangentialvektoren einer Lie-Gruppe tragen also mit dem Kommutator
+eine zusätzliche Struktur, nämlich die Struktur einer Lie-Algebra.
+
+\begin{definition}
+Ein Vektorraum $V$ mit einem bilinearen, Produkt
+\[
+[\;,\;]\colon V\times V \to V : (u,v) \mapsto [u,v],
+\]
+welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi}
+erfüllt, heisst eine {\em Lie-Algebra}.
+\end{definition}
+
+Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet.
+$LG$ besteht aus den Tangentialvektoren im Punkt $I$.
+Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$
+ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$.
+Insbesondere kann die Inverse der Exponentialabbildung als eine
+Karte in einer Umgebung von $I$ verwendet werden.
+
+Für die Lie-Algebren der Matrizengruppen, die früher definiert worden
+sind, verwenden wir die als Notationskonvention, dass der Name der
+Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist.
+Die Lie-Algebra von $\operatorname{SO}(n)$ ist also
+$L\operatorname{SO}(n) = \operatorname{os}(n)$,
+die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist
+$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$.
+
+
+%
+% Die Lie-Algebra von SO(3)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$
+\label{buch:subsection:die-lie-algebra-von-so3}}
+Zur Gruppe $\operatorname{SO}(3)$ der Drehmatrizen gehört die Lie-Algebra
+$\operatorname{so}(3)$ der antisymmetrischen $3\times 3$-Matrizen.
+Solche Matrizen haben die Form
+\[
+\Omega
+=
+\begin{pmatrix}
+ 0 & \omega_3&-\omega_2\\
+-\omega_3& 0 & \omega_1\\
+ \omega_2&-\omega_1& 0
+\end{pmatrix}
+\]
+Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional.
+
+Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist
+\[
+(I+t\Omega)
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+=
+\begin{pmatrix}
+ 1 & t\omega_3&-t\omega_2\\
+-t\omega_3& 1 & t\omega_1\\
+ t\omega_2&-t\omega_1& 1
+\end{pmatrix}
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+=
+\begin{pmatrix}
+x_1-t(-\omega_3x_2+\omega_2x_3)\\
+x_2-t( \omega_3x_1-\omega_1x_3)\\
+x_3-t(-\omega_2x_1+\omega_1x_2)
+\end{pmatrix}
+=
+x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x
+=
+x+ tx\times \omega.
+\]
+Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung
+um die Achse $\omega$.
+
+Wir können die Analogie zwischen Matrizen in $\operatorname{so}(3)$ und
+Vektoren in $\mathbb R^3$ noch etwas weiter treiben. Zu jedem Vektor
+in $\mathbb R^3$ konstruieren wir eine Matrix in $\operatorname{so}(3)$
+mit Hilfe der Abbildung
+\[
+\mathbb R^3\to\operatorname{so}(3)
+:
+\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+ 0 & v_3&-v_1\\
+-v_3& 0 & v_2\\
+ v_1&-v_2& 0
+\end{pmatrix}.
+\]
+Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$
+konstruierten Matrizen $U$ und $V$ ist:
+\begin{align*}
+[U,V]
+&=
+UV-VU
+\\
+&=
+\begin{pmatrix}
+ 0 & u_3&-u_1\\
+-u_3& 0 & u_2\\
+ u_1&-u_2& 0
+\end{pmatrix}
+\begin{pmatrix}
+ 0 & v_3&-v_1\\
+-v_3& 0 & v_2\\
+ v_1&-v_2& 0
+\end{pmatrix}
+-
+\begin{pmatrix}
+ 0 & v_3&-v_1\\
+-v_3& 0 & v_2\\
+ v_1&-v_2& 0
+\end{pmatrix}
+\begin{pmatrix}
+ 0 & u_3&-u_1\\
+-u_3& 0 & u_2\\
+ u_1&-u_2& 0
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+u_3v_3+u_1v_1 - u_3v_3 - u_1v_1
+ & u_1v_2 - u_2v_1
+ & u_3v_2 - u_2v_3
+\\
+u_2v_1 - u_1v_2
+ & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2
+ & u_3v_1 - u_1v_3
+\\
+u_2v_3 - u_3v_2
+ & u_1v_3 - u_3v_1
+ &-u_1v_1-u_2v_2 u_1v_1+u_2v_2
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+0
+ & u_1v_2 - u_2v_1
+ &-(u_2v_3-u_3v_2)
+\\
+-( u_1v_2 - u_2v_1)
+ & 0
+ & u_3v_1 - u_1v_3
+\\
+u_2v_3 - u_3v_2
+ &-( u_3v_1 - u_1v_3)
+ & 0
+\end{pmatrix}
+\end{align*}
+Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$.
+Damit können wir aus der Jacobi-Identität jetzt folgern, dass
+\[
+\vec u\times(\vec v\times w)
++
+\vec v\times(\vec w\times u)
++
+\vec w\times(\vec u\times v)
+=0
+\]
+für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist.
+Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$
+mit dem Vektorprodukt zu einer Lie-Algebra wird.
+In der Tat verwenden einige Bücher statt der vertrauten Notation
+$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der
+Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel
+das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1}
+von Landau und Lifschitz.
+
+Die Lie-Algebren sind vollständig klassifiziert worden, es gibt
+keine nicht trivialen zweidimensionalen Lie-Algebren.
+Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell:
+es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur
+möglich ist.
+
+Die antisymmetrischen Matrizen
+\[
+\omega_{23}
+=
+\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix}
+\quad
+\omega_{31}
+=
+\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix}
+\quad
+\omega_{12}
+=
+\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix}
+\]
+haben die Kommutatoren
+\begin{equation}
+\begin{aligned}
+[\omega_{23},\omega_{31}]
+&=
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&-1&0
+\end{pmatrix}
+=
+\omega_{12}
+\\
+[\omega_{31},\omega_{12}]
+&=
+\begin{pmatrix}
+0&1&0\\
+-1&0&0\\
+0&0&0
+\end{pmatrix}
+=
+\omega_{23}
+\\
+[\omega_{12},\omega_{23}]
+&=
+\begin{pmatrix}
+0&0&-1\\
+0&0&0\\
+1&0&0
+\end{pmatrix}
+=
+\omega_{31}
+\end{aligned}
+\label{buch:gruppen:eqn:so3-kommutatoren}
+\end{equation}
+
+\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$}
+Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den
+spurlosen Matrizen in $M_n(\mathbb{R})$.
+Der Kommutator solcher Matrizen erfüllt
+\[
+\operatorname{Spur}([A,B])
+=
+\operatorname{Spur}(AB-BA)
+=
+\operatorname{Spur}(AB)-\operatorname{Spur}(BA)
+=
+0,
+\]
+somit ist
+\[
+\operatorname{sl}_n(\mathbb{R})
+=
+\{
+A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}(A)=0
+\}
+\]
+mit dem Kommutator eine Lie-Algebra.
+
+%
+% Die Lie-Algebra von U(n)
+%
+\subsection{Die Lie-Algebra von $\operatorname{U}(n)$}
+Die Lie-Gruppe
+\[
+U(n)
+=
+\{
+A\in M_n(\mathbb{C}
+\;|\;
+AA^*=I
+\}
+\]
+heisst die unitäre Gruppe, sie besteht aus den Matrizen, die
+das sesquilineare Standardskalarprodukt auf dem komplexen
+Vektorraum $\mathbb{C}^n$ invariant lassen.
+Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$
+derart, dass $\gamma(0)=I$.
+Die Ableitung der Identität $AA^*=I$ führt dann auf
+\begin{align*}
+0
+=
+\frac{d}{dt}
+\gamma(t)\gamma(t)^*
+\bigg|_{t=0}
+=
+\dot{\gamma}(0)\gamma(0)^*
++
+\gamma(0)\dot{\gamma}(0)^*
+=
+\dot{\gamma}(0)
++
+\dot{\gamma}(0)^*
+\quad\Rightarrow\quad
+\dot{\gamma}(0)&=-\dot{\gamma}(0)^*.
+A&=-A^*
+\end{align*}
+Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen
+Matrizen.
+
+Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen
+Matrizen wieder anithermitesch ist:
+\begin{align*}
+[A,B]^*
+&=
+(AB-BA)^*
+=
+B^*A^*-A^*B^*
+=
+BA - AB
+=
+-[B,A].
+\end{align*}
+
+Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$,
+für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$
+oder $\overline{a}_{ii}=-a_{ii}$.
+Der Realteil von $a_{ii}$ ist
+\[
+\Re a_{ii}
+=
+\frac{a_{ii}+\overline{a}_{ii}}2
+=
+0,
+\]
+die Diagonalelemente einer antihermiteschen Matrix sind daher rein
+imaginär.
+
+
+%
+% Die Lie-Algebra SU(2)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$}
+Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den
+spurlosen antihermiteschen Matrizen.
+Sie erfüllen daher die folgenden Bedingungen:
+\[
+A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
+\qquad
+\text{mit}
+\qquad
+\left\{
+\begin{aligned}
+a+d&=0&&\Rightarrow& a=is = -d
+\\
+b^*&=-c
+\end{aligned}
+\right.
+\]
+Damit hat $A$ die Form
+\begin{align*}
+A=\begin{pmatrix}
+is&u+iv\\
+-u+iv&-is
+\end{pmatrix}
+&=
+s
+\begin{pmatrix}
+i&0\\
+0&-i
+\end{pmatrix}
++
+u
+\begin{pmatrix}
+ 0&1\\
+-1&0
+\end{pmatrix}
++
+v
+\begin{pmatrix}
+0&i\\
+i&0
+\end{pmatrix}
+\\
+&=
+iv\underbrace{\begin{pmatrix}0&1\\1&0\end{pmatrix}}_{\displaystyle=\sigma_1}
++
+iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2}
++
+is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3}
+\end{align*}
+Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren
+\begin{align*}
+[\sigma_1,\sigma_2]
+&=
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+-
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+=
+2\begin{pmatrix}i&0\\0&-i \end{pmatrix}
+=
+2i\sigma_3,
+\\
+[\sigma_2,\sigma_3]
+&=
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+-
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+=
+2
+\begin{pmatrix}0&i\\i&0\end{pmatrix}
+=
+2i\sigma_1.
+\\
+[\sigma_1,\sigma_3]
+&=
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+-
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+=
+2i
+\begin{pmatrix}0&-1\\1&0\end{pmatrix}
+=
+2i\sigma_2,
+\end{align*}
+Bis auf eine Skalierung stimmt dies überein mit den Kommutatorprodukten
+der Matrizen $\omega_{23}$, $\omega_{31}$ und $\omega_{12}$
+in \eqref{buch:gruppen:eqn:so3-kommutatoren}.
+Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte
+\begin{align*}
+\bigl[-{\textstyle\frac12}i\sigma_1,-{\textstyle\frac12}i\sigma_2\bigr]
+&=
+-{\textstyle\frac14}[\sigma_1,\sigma_2]
+=
+-{\textstyle\frac14}\cdot 2i\sigma_3
+=
+-{\textstyle\frac12}i\sigma_3
+\\
+\bigl[-{\textstyle\frac12}i\sigma_2,-{\textstyle\frac12}i\sigma_3\bigr]
+&=
+-{\textstyle\frac14}[\sigma_2,\sigma_3]
+=
+-{\textstyle\frac14}\cdot 2i\sigma_1
+=
+-{\textstyle\frac12}i\sigma_1
+\\
+\bigl[-{\textstyle\frac12}i\sigma_3,-{\textstyle\frac12}i\sigma_1\bigr]
+&=
+-{\textstyle\frac14}[\sigma_3,\sigma_1]
+=
+-{\textstyle\frac14}\cdot 2i\sigma_2
+=
+-{\textstyle\frac12}i\sigma_2
+\end{align*}
+Die lineare Abbildung, die
+\begin{align*}
+\omega_{23}&\mapsto -{\textstyle\frac12}i\sigma_1\\
+\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\
+\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3
+\end{align*}
+abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$
+auf die Lie-Algebra $\operatorname{su}(2)$.
+Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$
+haben also die gleiche Lie-Algebra.
+
+Tatsächlich kann man Hilfe von Quaternionen die Matrix $\operatorname{SU}(2)$
+als Einheitsquaternionen beschreiben und damit eine Darstellung der
+Drehmatrizen in $\operatorname{SO}(3)$ finden.
+Dies wird in Kapitel~\ref{chapter:clifford} dargestellt.
+
+
+
+
+
diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index d6fc007..2c88b76 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -1,881 +1,881 @@ -% -% lie-gruppen.tex -- Lie-Gruppebn -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Lie-Gruppen -\label{buch:section:lie-gruppen}} -\rhead{Lie-Gruppen} -Die in bisherigen Beispielen untersuchten Matrizengruppen zeichnen sich -durch zusätzliche Eigenschaften aus. -Die Gruppe -\[ -\operatorname{GL}_n(\mathbb{R}) -= -\{ A \in M_n(\mathbb{R})\;|\; \det A \ne 0\} -\] -besteht aus den Matrizen, deren Determinante nicht $0$ ist. -Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge -in $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ ist, ist -$\operatorname{GL}_n(\mathbb{R})$ eine offene Teilmenge in $\mathbb{R}^{n^2}$, -sie besitzt also automatisch die Struktur einer $n^2$-Mannigfaltigkeit. -Dies gilt jedoch auch für alle anderen Matrizengruppen, die in diesem -Abschnitt genauer untersucht werden sollen. - -\subsection{Mannigfaltigkeitsstruktur der Matrizengruppen -\label{buch:subsection:mannigfaltigkeitsstruktur-der-matrizengruppen}} -Eine Matrizengruppe wird automatsich zu einer Mannigfaltigkeit, -wenn es gelingt, eine Karte für eine Umgebung des neutralen Elements -zu finden. -Dazu muss gezeigt werden, dass sich aus einer solchen Karte für jedes -andere Gruppenelement eine Karte für eine Umgebung ableiten lässt. -Sei also $\varphi_e\colon U_e\mathbb{R}^N$ eine Karte für die Umgebung -$U_e\subset G$ von $e\in G$. -Für $g\in G$ ist dann die Abbildung -\[ -\varphi_g -\colon -U_g -= -gU_e -\to -\mathbb{R} -: -h\mapsto \varphi_e(g^{-1}h) -\] -eine Karte für die Umgebung $U_g$ des Gruppenelementes $g$. -schreibt man $l_{g}$ für die Abbildung $h\mapsto gh$, dann -kann man die Kartenabbildung auch $\varphi_g = \varphi_e\circ l_{g^{-1}}$ -schreiben. - -\subsubsection{Kartenwechsel} -Die Kartenwechsel-Abbildungen für zwei Karten $\varphi_{g_1}$ -und $\varphi_{g_2}$ ist die Abbildung -\[ -\varphi_{g_1,g_2} -= -\varphi_{g_1}\circ \varphi_{g_2}^{-1} -= -\varphi_e\circ l_{g_1^{-1}} \circ (\varphi_e\circ l_{g_2^{-1}})^{-1} -= -\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2^{-1}}^{-1} \varphi_e^{-1} -= -\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2}\varphi_e^{-1} -= -\varphi_e\circ l_{g_1^{-1}g_2}\varphi_e^{-1} -\] -mit der Ableitung -\[ -D\varphi_e\circ Dl_{g_1^{-1}g_2} D\varphi_e^{-1} -= -D\varphi_e\circ Dl_{g_1^{-1}g_2} (D\varphi_e)^{-1}. -\] -Die Abbildung $l_{g_1^{-1}g_2}$ ist aber nur die Multiplikation mit -einer Matrix, also eine lineare Abbildung, so dass der Kartenwechsel -nichts anderes ist als die Darstellung der Matrix der Linksmultiplikation -$l_{g_1^{-1}g_2}$ im Koordinatensystem der Karte $U_e$ ist. -Differenzierbarkeit der Kartenwechsel ist damit sichergestellt, -die Matrizengruppen sind automatisch differenzierbare Mannigfaltigkeiten. - -Die Konstruktion aller Karten aus einer einzigen Karte für eine -Umgebung des neutralen Elements zeigt auch, dass es für die Matrizengruppen -reicht, wenn man die Elemente in einer Umgebung des neutralen -Elementes parametrisieren kann. -Dies ist jedoch nicht nur für die Matrizengruppen möglich. -Wenn eine Gruppe gleichzeitig eine differenzierbare Mannigfaltigkeit -ist, dann können Karten über die ganze Gruppe transportiert werden, -wenn die Multiplikation mit Gruppenelementen eine differenzierbare -Abbildung ist. -Solche Gruppen heissen auch Lie-Gruppen gemäss der folgenden Definition. - -\begin{definition} -\index{Lie-Gruppe}% -Eine {\em Lie-Gruppe} ist eine Gruppe, die gleichzeitig eine differenzierbare -Mannigfaltigkeit ist derart, dass die Abbildungen -\begin{align*} -G\times G \to G &: (g_1,g_2)\mapsto g_1g_2 -\\ -G\to G &: g \mapsto g^{-1} -\end{align*} -differenzierbare Abbildungen zwischen Mannigfaltigkeiten sind. -\end{definition} - -Die Abstraktheit dieser Definition täuscht etwas über die -Tatsache hinweg, dass sich mit Hilfe der Darstellungstheorie -jede beliebige Lie-Gruppe als Untermannigfaltigkeit einer -Matrizengruppe verstehen lässt. -Das Studium der Matrizengruppen erlaubt uns daher ohne grosse -Einschränkungen ein Verständnis für die Theorie der Lie-Gruppen -zu entwickeln. - -\subsubsection{Tangentialvektoren und die Exponentialabbildung} -Die Matrizengruppen sind alle in der -$n^2$-dimensionalen Mannigfaltigkeit $\operatorname{GL}_n(\mathbb{R})$ -enthalten. -Diffferenzierbare Kurven $\gamma(t)$ in $\operatorname{GL}_n(\mathbb{R})$ -haben daher in jedem Punkt Tangentialvektoren, die als Matrizen in -$M_n(\mathbb{R})$ betrachtet werden können. -Wenn $\gamma(t)$ die Matrixelemente $\gamma_{ij}(t)$ hat, dann ist der -Tangentialvektor im Punkt $\gamma(t)$ durch -\[ -\frac{d}{dt} -\gamma(t) -= -\begin{pmatrix} -\dot{\gamma}_{11}(t)&\dots &\dot{\gamma}_{1n}(t)\\ -\vdots &\ddots&\vdots \\ -\dot{\gamma}_{n1}(t)&\dots &\dot{\gamma}_{nn}(t) -\end{pmatrix} -\] -gegeben. - -Im Allgemeinen kann man Tangentialvektoren in verschiedenen Punkten -einer Mannigfaltigkeit nicht miteinander vergleichen. -Die Multiplikation $l_g$, die den Punkt $e$ in den Punkt $g$ verschiebt, -transportiert auch die Tangentialvektoren im Punkt $e$ in -Tangentialvektoren im Punkt $g$. - -\begin{aufgabe} -Gibt es eine Kurve $\gamma(t)\in\mathbb{GL}_n(\mathbb{R})$ mit -$\gamma(0)=e$ derart, dass der Tangentialvektor im Punkt $\gamma(t)$ -für $t>0$ derselbe ist wie der Tangentialvektor im Punkt $e$, transportiert -durch Matrixmultiplikation mit $\gamma(t)$? -\end{aufgabe} - -Eine solche Kurve muss die Differentialgleichung -\begin{equation} -\frac{d}{dt}\gamma(t) -= -\gamma(t)\cdot A -\label{buch:gruppen:eqn:expdgl} -\end{equation} -erfüllen, wobei $A\in M_n(\mathbb{R})$ der gegebene Tangentialvektor -in $e=I$ ist. - -Die Matrixexponentialfunktion -\[ -e^{At} -= -1+At+\frac{A^2t^2}{2!}+\frac{A^3t^3}{3!}+\frac{A^4t^4}{4!}+\dots -\] -liefert eine Einparametergruppe -$\mathbb{R}\to \operatorname{GL}_n(\mathbb{R})$ mit der Ableitung -\[ -\frac{d}{dt} e^{At} -= -\lim_{h\to 0} \frac{e^{A(t+h)}-e^{At}}{h} -= -\lim_{h\to 0} e^{At}\frac{e^{Ah}-I}{h} -= -e^{At} A. -\] -Sie ist also Lösung der Differentialgleichung~\eqref{buch:gruppen:eqn:expdgl}. - -\subsection{Drehungen in der Ebene -\label{buch:gruppen:drehungen2d}} -Die Drehungen der Ebene sind die orientierungserhaltenden Symmetrien -des Einheitskreises, der in Abbildung~\ref{buch:gruppen:fig:kartenkreis} -als Mannigfaltigkeit erkannt wurde. -Sie bilden eine Lie-Gruppe, die auf verschiedene Arten als Matrix -beschrieben werden kann. - -\subsubsection{Die Untergruppe -$\operatorname{SO}(2)\subset \operatorname{GL}_2(\mathbb{R})$} -Drehungen der Ebene können in einer orthonormierten Basis durch -Matrizen der Form -\[ -D_{\alpha} -= -\begin{pmatrix} -\cos\alpha&-\sin\alpha\\ -\sin\alpha& \cos\alpha -\end{pmatrix} -\] -dargestellt werden. -Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit -$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$. -Die Abbildung -\[ -D_{\bullet} -\colon -\mathbb{R}\to \operatorname{SO}(2) -: -\alpha \mapsto D_{\alpha} -\] -hat die Eigenschaften -\begin{align*} -D_{\alpha+\beta}&= D_{\alpha}D_{\beta} -\\ -D_0&=I -\\ -D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}. -\end{align*} -Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische -Funktion ist. -$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf -die Menge der Drehmatrizen in der Ebene ab. - -Für jedes Intervall $(a,b)\subset\mathbb{R}$ mit Länge -$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto D_{\alpha}$ umkehrbar, -die Umkehrung kann als Karte verwendet werden. -Zwei verschiedene Karten $\alpha_1\colon U_1\to\mathbb{R}$ und -$\alpha_2\colon U_2\to\mathbb{R}$ bilden die Elemente $g\in U_1\cap U_2$ -in Winkel $\alpha_1(g)$ und $\alpha_2(g)$ ab, für die -$D_{\alpha_1(g)}=D_{\alpha_2(g)}$ gilt. -Dies ist gleichbedeutend damit, dass $\alpha_1(g)=\alpha_2(g)+2\pi k$ -mit $k\in \mathbb{Z}$. -In einem Intervall in $U_1\cap U_2$ muss $k$ konstant sein. -Die Kartenwechselabblidung ist also nur die Addition eines Vielfachen -von $2\pi$, mit der identischen Abbildung als Ableitung. -Diese Karten führen also auf besonders einfache Kartenwechselabbildungen. - -\subsubsection{Die Untergruppe $S^1\subset\mathbb{C}$} -Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen -Ebene $\mathbb{C}$ erhalten. -Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine -Drehung der komplexen Ebene um den Winkel $\alpha$. -Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung -\[ -f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha} -\] -hat die Eigenschaften -\begin{align*} -f(\alpha+\beta) &= f(\alpha)f(\beta) -\\ -f(0)&=1 -\\ -f(2\pi k)&=1\qquad\forall k\in\mathbb{Z}, -\end{align*} -die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$ -analog sind. - -Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form -$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des -Einheitskreises in der Ebene. -Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom -Betrag $1$. -$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl -$z,w\in S^1$ gilt -$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$. - -Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache -von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$. -Damit kann man jetzt die Abbildung -\[ -\varphi -\colon -S^1\to \operatorname{SO}(2) -: -z\mapsto D_{\alpha(z)} -\] -konstruieren. -Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache -von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche -Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher -wohldefiniert. -$\varphi$ erfüllt ausserdem die Bedingungen -\begin{align*} -\varphi(z_1z_2) -&= -D_{\alpha(z_1z_2)} -= -D_{\alpha(z_1)+\alpha(z_2)} -= -D_{\alpha(z_1)}D_{\alpha(z_2)} -= -\varphi(z_1)\varphi(z_2) -\\ -\varphi(1) -&= -D_{\alpha(1)} -= -D_0 -= -I -\end{align*} -Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$ -in die Gruppe $\operatorname{SO}(2)$. -Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis -in der komplexen Ebene identifiziert werden. - -\subsubsection{Tangentialvektoren von $\operatorname{SO}(2)$} -Da die Gruppe $\operatorname{SO}(2)$ eine eindimensionale Gruppe -ist, kann jede Kurve $\gamma(t)$ durch den Drehwinkel $\alpha(t)$ -mit $\gamma(t) = D_{\alpha(t)}$ beschrieben werden. -Die Ableitung in $M_2(\mathbb{R})$ ist -\begin{align*} -\frac{d}{dt} \gamma(t) -&= -\frac{d}{d\alpha} -\begin{pmatrix} -\cos\alpha(t) & - \sin\alpha(t)\\ -\sin\alpha(t) & \cos\alpha(t) -\end{pmatrix} -\cdot -\frac{d\alpha}{dt} -\\ -&= -\begin{pmatrix} --\sin\alpha(t)&-\cos\alpha(t)\\ - \cos\alpha(t)&-\sin\alpha(t) -\end{pmatrix} -\cdot -\dot{\alpha}(t) -\\ -&= -\begin{pmatrix} -\cos\alpha(t) & - \sin\alpha(t)\\ -\sin\alpha(t) & \cos\alpha(t) -\end{pmatrix} -\begin{pmatrix} -0&-1\\ -1&0 -\end{pmatrix} -\cdot -\dot{\alpha}(t) -= -D_{\alpha(t)}J\cdot\dot{\alpha}(t). -\end{align*} -Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $D_\alpha$ -entstehen aus $J$ durch Drehung mit der Matrix $D_\alpha$ und Skalierung -mit $\dot{\alpha}(t)$. - -% -% Isometrien von R^n -% -\subsection{Isometrien von $\mathbb{R}^n$ -\label{buch:gruppen:isometrien}} - -\subsubsection{Skalarprodukt} -Lineare Abbildungen des Raumes $\mathbb{R}^n$ können durch -$n\times n$-Matrizen beschrieben werden. -Die Matrizen, die das Standardskalarprodukt $\mathbb{R}^n$ erhalten, -bilden eine Gruppe, die in diesem Abschnitt genauer untersucht werden soll. -Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt, wenn -für jedes beliebige Paar $x,y$ von Vektoren gilt -$\langle Ax,Ay\rangle = \langle x,y\rangle$. -Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden: -\[ -\langle Ax,Ay\rangle -= -(Ax)^tAy -= -x^tA^tAy -= -x^ty -= -\langle x,y\rangle -\] -für jedes Paar von Vektoren $x,y\in\mathbb{R}$. - -Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix -einer Abbildung $f$ in der Standardbasis bestimmen. -Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion -des Vektors $v$ auf die Richtung $e_i$. -Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$. -Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente -$a_{ij}=e_i^tAe_j$. - -\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$} -Die Matrixelemente von $A^tA$ sind -$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$ -sind diejenigen der Einheitsmatrix, -die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$. -Dies sind die {\em orthogonalen} Matrizen. -Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht -daher aus den Matrizen -\[ -\operatorname{O}(n) -= -\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}. -\] -Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen, -die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen -Menge $M_n(\mathbb{R})$ auszeichnen. -Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher -die Dimension -\[ -n^2 - \frac{n(n+1)}{2} -= -\frac{2n^2-n^2-n}{2} -= -\frac{n(n-1)}2. -\] -Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional. - -\subsubsection{Tangentialvektoren} -Die orthogonalen Matrizen bilden eine abgeschlossene Untermannigfaltigkeit -von $\operatorname{GL}_n(\mathbb{R})$, nicht jede Matrix $M_n(\mathbb{R})$ -kann also ein Tangentialvektor von $O(n)$ sein. -Um herauszufinden, welche Matrizen als Tangentialvektoren in Frage -kommen, betrachten wir eine Kurve $\gamma\colon\mathbb{R}\to O(n)$ -von orthogonalen Matrizen mit $\gamma(0)=I$. -Orthogonal bedeutet -\[ -\begin{aligned} -&& -0 -&= -\frac{d}{dt}I -= -\frac{d}{dt} -(\gamma(t)^t\gamma(t)) -= -\dot{\gamma}(t)^t\gamma(t)) -+ -\gamma(t)^t\dot{\gamma}(t)) -\\ -&\Rightarrow& -0 -&= -\dot{\gamma}(0)^t \cdot I + I\cdot \dot{\gamma(0)} -= -\dot{\gamma}(0)^t + \dot{\gamma}(0) -= -A^t+A=0 -\\ -&\Rightarrow& -A^t&=-A -\end{aligned} -\] -Die Tangentialvektoren von $\operatorname{O}(n)$ sind also genau -die antisymmetrischen Matrizen. - -Für $n=2$ sind alle antisymmetrischen Matrizen Vielfache der Matrix -$J$, wie in Abschnitt~\ref{buch:gruppen:drehungen2d} -gezeigt wurde. - -Für jedes Paar $i<j$ ist die Matrix $A_{ij}$ mit den Matrixelementen -$(A_{ij})_{ij}=-1$ und $(A_{ij})_{ji}=1$ -antisymmetrisch. -Für $n=2$ ist $A_{12}=J$. -Die $n(n-1)/2$ Matrizen $A_{ij}$ bilden eine Basis des -$n(n-1)/2$-dimensionale Tangentialraumes von $\operatorname{O}(n)$. - -Tangentialvektoren in einem anderen Punkt $g\in\operatorname{O}(n)$ -haben die Form $gA$, wobei $A$ eine antisymmetrische Matrix ist. -Diese Matrizen sind nur noch in speziellen Fällen antisymmetrisch, -zum Beispiel im Punkt $-I\in\operatorname{O}(n)$. - -\subsubsection{Die Gruppe $\operatorname{SO}(n)$} -Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die -die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen. -Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante -einer orthogonalen Matrix nur $\pm 1$ sein. -Orientierungserhaltende Isometrien haben Determinante $1$. - -Die Gruppe -\[ -\operatorname{SO}(n) -= -\{A\in\operatorname{O}(n)\;|\; \det A=1\} -\] -heisst die {\em spezielle orthogonale Gruppe}. -Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$. - -\subsubsection{Die Gruppe $\operatorname{SO}(3)$} -Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen -Raumes hat die Dimension $3(3-1)/2=3$. -Eine Drehung wird festgelegt durch die Richtung der Drehachse und den -Drehwinkel. -Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt -auf der zweidimensionalen Kugel. -Der Drehwinkel ist der dritte Parameter. - -Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden -aus den Matrizen -\begin{align*} -D_{x,\alpha} -&= -\begin{pmatrix} -1&0&0\\ -0&\cos\alpha&-\sin\alpha\\ -0&\sin\alpha& \cos\alpha -\end{pmatrix}, -& -D_{y,\beta} -&= -\begin{pmatrix} - \cos\beta&0&\sin\beta\\ - 0 &1& 0 \\ --\sin\beta&0&\cos\beta -\end{pmatrix}, -& -D_{z,\gamma} -&= -\begin{pmatrix} -\cos\gamma&-\sin\gamma&0\\ -\sin\gamma& \cos\gamma&0\\ - 0 & 0 &1 -\end{pmatrix} -\\ -&= -e^{A_{23}t} -& -&= -e^{-A_{13}t} -& -&= -e^{A_{21}t} -\end{align*} -die Drehungen um die Koordinatenachsen um den Winkel $\alpha$ -beschreiben. -Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die -drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$ -angesehen werden. - -% -% Spezielle lineare Gruppe -% -\subsection{Volumenerhaltende Abbildungen und -die Gruppe $\operatorname{SL}_n(\mathbb{R})$ -\label{buch:gruppen:sl}} -Die Elemente der Gruppe $SO(n)$ erhalten Längen, Winkel und die -Orientierung, also auch das Volumen. -Es gibt aber volumenerhaltende Abbildungen, die Längen oder Winkel -nicht notwendigerweise erhalten. -Matrizen $A\in M_n(\mathbb{R})$, die das Volumen erhalten, -haben die Determinante $\det A=1$. -Wegen $\det(AB)=\det A\det B$ ist das Produkt zweier Matrizen mit -Determinante $1$ wieder eine solche, sie bilden daher eine Gruppe. - -\begin{definition} -Die volumenerhaltenden Abbildungen bilden die Gruppe -\[ -\operatorname{SL}_n(\mathbb{R}) -= -\{ -A\in M_n(\mathbb{R}) -\;|\; -\det (A) = 1 -\} -\] -sie heisst die {\em spezielle lineare Gruppe}. -\end{definition} - -Wir wollen jetzt die Tangentialvektoren von $\operatorname{SL}_n(\mathbb{R})$ -bestimmen. -Dazu sei $A(t)$ eine Kurve in $\operatorname{SL}_n(\mathbb{R})$ -mit $A(0)=I$. -Für alle $t\in\mathbb{R}$ ist $\det A(t)=1$, daher ist die Ableitung -\[ -\frac{d}{dt} \det A(t) = 0 -\quad\text{an der Stelle $t=0$.} -\] -Für $n=2$ ist -\begin{align*} -A(t) -&= -\begin{pmatrix} -a(t)&b(t)\\ -c(t)&d(t) -\end{pmatrix} -\in -\operatorname{SL}_2(\mathbb{R}) -&&\Rightarrow& -\frac{d}{dt} -\det A(t)\bigg|_{t=0} -&= -\dot{a}(0) d(0)+a(0)\dot{d}(0) -- -\dot{b}(0) c(0)-b(0)\dot{c}(0) -\\ -&&&& -&= -\dot{a}(0) + \dot{d}(0) -\\ -&&&& -&= -\operatorname{Spur}\frac{dA}{dt}. -\end{align*} -Dies gilt nicht nur im Falle $n=2$, sondern ganz allgemein für beliebige -$n\times n$-Matrizen. - -\begin{satz} -Ist $A(t)$ eine differenzierbare Kurve in $\operatorname{SL}_n(\mathbb{B})$ -mit $A(0)=I$, dann ist $\operatorname{Spur}\dot{A}(0)=0$. -\end{satz} - -\begin{proof}[Beweis] -Die Entwicklung der Determinante von $A$ nach der ersten Spalte ist -\[ -\det A(t) = \sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \det A_{i1}(t). -\] -Die Ableitung nach $t$ ist -\[ -\frac{d}{dt} \det A(t) -= -\sum_{i=1}^n (-1)^{i+1} \dot{a}_{i1}(t) \det A_{i1}(t). -+ -\sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \frac{d}{dt}\det A_{i1}(t). -\] -An der Stelle $t=0$ enthält $\det A_{i1}(0)$ für $i\ne 1$ -eine Nullzeile, der einzige nichtverschwindende Term in der ersten -Summe ist daher der erste. -In der zweiten Summe ist das einzige nicht verschwindende $a_{i1}(0)$ -jenes für $i=1$, somit ist die Ableitung von $\det A(t)$ -\begin{equation} -\frac{d}{dt} \det A(t) -= -\dot{a}_{11}(t) \det A_{11}(t). -+ -\frac{d}{dt}\det A_{11}(t) -= -\dot{a}_{11}(0) -+ -\frac{d}{dt}\det A_{11}(t). -\label{buch:gruppen:eqn:detspur} -\end{equation} -Die Beziehung \eqref{buch:gruppen:eqn:detspur} kann für einen Beweis mit -vollständiger Induktion verwendet werden. - -Die Induktionsverankerung für $n=1$ besagt, dass $\det A(t)=a_{11}(t)$ -genau dann konstant $=1$ ist, wenn $\dot{a}_{11}(0)=\operatorname{Spur}A(0)$ -ist. -Unter der Induktionsannahme, dass für eine $(n-1)\times(n-1)$-Matrix -$\tilde{A}(t)$ mit $\tilde{A}(0)=I$ die Ableitung der Determinante -\[ -\frac{d}{dt}\tilde{A}(0) -= -\operatorname{Spur}\dot{\tilde{A}}(0) -\] -ist, folgt jetzt mit -\eqref{buch:gruppen:eqn:detspur}, dass -\[ -\frac{d}{dt}A(0) -= -\dot{a}_{11}(0) -+ -\frac{d}{dt} \det A_{11}(t)\bigg|_{t=0} -= -\dot{a}_{11}(0) -+ -\operatorname{Spur}\dot{A}_{11}(0) -= -\operatorname{Spur}\dot{A}(0). -\] -Damit folgt jetzt die Behauptung für alle $n$. -\end{proof} - -\begin{beispiel} -Die Tangentialvektoren von $\operatorname{SL}_2(\mathbb{R})$ sind -die spurlosen Matrizen -\[ -A=\begin{pmatrix}a&b\\c&d\end{pmatrix} -\quad\Rightarrow\quad -\operatorname{Spur}A=a+d=0 -\quad\Rightarrow\quad -A=\begin{pmatrix}a&b\\c&-a\end{pmatrix}. -\] -Der Tangentialraum ist also dreidimensional. -Als Basis könnte man die folgenden Vektoren verwenden: -\begin{align*} -A -&= -\begin{pmatrix}1&0\\0&-1\end{pmatrix} -&&\Rightarrow& -e^{At} -&= -\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} -\\ -B -&= -\begin{pmatrix}0&-1\\1&0\end{pmatrix} -&&\Rightarrow& -e^{Bt} -&= -\begin{pmatrix} -\cos t & -\sin t\\ -\sin t & \cos t -\end{pmatrix} -\\ -C -&= -\begin{pmatrix}0&1\\1&0\end{pmatrix} -&&\Rightarrow& -e^{Ct} -&= -I + Ct + \frac{C^2t^2}{2!} + \frac{C^3t^3}{3!} + \frac{C^4t^4}{4!}+\dots -\\ -&&&& -&= -I\biggl(1 + \frac{t^2}{2!} + \frac{t^4}{4!}+\dots \biggr) -+ -C\biggl(t + \frac{t^3}{3!} + \frac{t^5}{5!}+\dots \biggr) -\\ -&&&& -&= -I\cosh t + C \sinh t -= -\begin{pmatrix} -\cosh t & \sinh t\\ -\sinh t & \cosh t -\end{pmatrix}, -\end{align*} -wobei in der Auswertung der Potenzreihe für $e^{Ct}$ verwendet wurde, -dass $C^2=I$. - -Die Matrizen $e^{At}$ Streckungen der einen Koordinatenachse und -Stauchungen der anderen derart, dass das Volumen erhalten bleibt. -Die Matrizen $e^{Bt}$ sind Drehmatrizen, die Längen und Winkel und -damit erst recht den Flächeninhalt erhalten. -Die Matrizen der Form $e^{Ct}$ haben die Vektoren $(1,\pm1)$ als -Eigenvektoren: -\begin{align*} -\begin{pmatrix}1\\1\end{pmatrix} -&\mapsto -e^{Ct} -\begin{pmatrix}1\\1\end{pmatrix} -= -(\cosh t +\sinh t) -\begin{pmatrix}1\\1\end{pmatrix} -= -\biggl( -\frac{e^t+e^{-t}}2 -+ -\frac{e^t-e^{-t}}2 -\biggr) -\begin{pmatrix}1\\1\end{pmatrix} -= -e^t -\begin{pmatrix}1\\1\end{pmatrix} -\\ -\begin{pmatrix}1\\-1\end{pmatrix} -&\mapsto -e^{Ct} -\begin{pmatrix}1\\-1\end{pmatrix} -= -(\cosh t -\sinh t) -\begin{pmatrix}1\\-1\end{pmatrix} -= -\biggl( -\frac{e^t+e^{-t}}2 -- -\frac{e^t-e^{-t}}2 -\biggr) -\begin{pmatrix}1\\-1\end{pmatrix} -= -e^{-t} -\begin{pmatrix}1\\-1\end{pmatrix} -\end{align*} -Die Matrizen $e^{Ct}$ strecken die Richtung $(1,1)$ um $e^t$ und -die dazu orthogonale Richtung $(1,-1)$ um den Faktor $e^{-t}$. -Dies ist die gegenüber $e^{At}$ um $45^\circ$ verdrehte Situation, -auch diese Matrizen sind flächenerhaltend. -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/sl2.pdf} -\caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen -für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden -linearen Abbildungen von $\mathbb{R}^2$. -In allen drei Fällen wird ein blauer Rhombus mit den Ecken in den -Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu -zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten. -In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen -der Bilder der Standardbasisvektoren dar. -\label{buch:gruppen:fig:sl2}} -\end{figure}% -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/scherungen.pdf} -\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung -Die inken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen, -die zugehörigen Einparameter-Untergruppen beschreiben Schwerungen. -\label{buch:gruppen:fig:scherungen}} -\end{figure} -\end{beispiel} - -% -% Die Gruppe SU(2) -% -\subsection{Die Gruppe $\operatorname{SU}(2)$ -\label{buch:gruppen:su2}} -Die Menge der Matrizen -\[ -\operatorname{SU}(2) -= -\left\{ -\left. -A=\begin{pmatrix} a&b\\c&d\end{pmatrix} -\;\right|\; -a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I -\right\} -\] -heisst die {\em spezielle unitäre Gruppe}. -Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist -$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$. -Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte -von $a$ und $b$ weiter ein. -Aus -\[ -A^* -= -\begin{pmatrix} -\overline{a}&\overline{c}\\ -\overline{b}&\overline{d} -\end{pmatrix} -\] -und den Bedingungen führen die Gleichungen -\[ -\begin{aligned} -a\overline{a}+b\overline{b}&=1 -&&\Rightarrow&|a|^2+|b|^2&=1 -\\ -a\overline{c}+b\overline{d}&=0 -&&\Rightarrow& -\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}} -\\ -c\overline{a}+d\overline{b}&=0 -&&\Rightarrow& -\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}} -\\ -c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1 -\\ -ad-bc&=1 -\end{aligned} -\] -Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$ -gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$. -Damit wird die Bedingung an die Determinante zu -\[ -1 -= -ad-bc = at\overline{a} - b(-t\overline{b}) -= -t(|a|^2+|b|^2) -= -t, -\] -also muss die Matrix $A$ die Form haben -\[ -A -= -\begin{pmatrix} -a&b\\ --\overline{b}&\overline{a} -\end{pmatrix} -\qquad\text{mit}\quad |a|^2+|b|^2=1. -\] -Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$, -dann besteht $SU(2)$ aus den Matrizen der Form -\[ -A= -\begin{pmatrix} - a_1+ia_2&b_1+ib_2\\ --b_1+ib_2&a_1-ia_2 -\end{pmatrix} -\] -mit der zusätzlichen Bedingung -\[ -|a|^2+|b|^2 -= -a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1. -\] -Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer -eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$ -eines vierdimensionalen reellen Vektorraums mit Länge $1$. -Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen -Kugel, die in einem vierdimensionalen Raum eingebettet ist. - - - +%
+% lie-gruppen.tex -- Lie-Gruppebn
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Lie-Gruppen
+\label{buch:section:lie-gruppen}}
+\rhead{Lie-Gruppen}
+Die in bisherigen Beispielen untersuchten Matrizengruppen zeichnen sich
+durch zusätzliche Eigenschaften aus.
+Die Gruppe
+\[
+\operatorname{GL}_n(\mathbb{R})
+=
+\{ A \in M_n(\mathbb{R})\;|\; \det A \ne 0\}
+\]
+besteht aus den Matrizen, deren Determinante nicht $0$ ist.
+Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge
+in $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ ist, ist
+$\operatorname{GL}_n(\mathbb{R})$ eine offene Teilmenge in $\mathbb{R}^{n^2}$,
+sie besitzt also automatisch die Struktur einer $n^2$-Mannigfaltigkeit.
+Dies gilt jedoch auch für alle anderen Matrizengruppen, die in diesem
+Abschnitt genauer untersucht werden sollen.
+
+\subsection{Mannigfaltigkeitsstruktur der Matrizengruppen
+\label{buch:subsection:mannigfaltigkeitsstruktur-der-matrizengruppen}}
+Eine Matrizengruppe wird automatsich zu einer Mannigfaltigkeit,
+wenn es gelingt, eine Karte für eine Umgebung des neutralen Elements
+zu finden.
+Dazu muss gezeigt werden, dass sich aus einer solchen Karte für jedes
+andere Gruppenelement eine Karte für eine Umgebung ableiten lässt.
+Sei also $\varphi_e\colon U_e\mathbb{R}^N$ eine Karte für die Umgebung
+$U_e\subset G$ von $e\in G$.
+Für $g\in G$ ist dann die Abbildung
+\[
+\varphi_g
+\colon
+U_g
+=
+gU_e
+\to
+\mathbb{R}
+:
+h\mapsto \varphi_e(g^{-1}h)
+\]
+eine Karte für die Umgebung $U_g$ des Gruppenelementes $g$.
+schreibt man $l_{g}$ für die Abbildung $h\mapsto gh$, dann
+kann man die Kartenabbildung auch $\varphi_g = \varphi_e\circ l_{g^{-1}}$
+schreiben.
+
+\subsubsection{Kartenwechsel}
+Die Kartenwechsel-Abbildungen für zwei Karten $\varphi_{g_1}$
+und $\varphi_{g_2}$ ist die Abbildung
+\[
+\varphi_{g_1,g_2}
+=
+\varphi_{g_1}\circ \varphi_{g_2}^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}} \circ (\varphi_e\circ l_{g_2^{-1}})^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2^{-1}}^{-1} \varphi_e^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2}\varphi_e^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}g_2}\varphi_e^{-1}
+\]
+mit der Ableitung
+\[
+D\varphi_e\circ Dl_{g_1^{-1}g_2} D\varphi_e^{-1}
+=
+D\varphi_e\circ Dl_{g_1^{-1}g_2} (D\varphi_e)^{-1}.
+\]
+Die Abbildung $l_{g_1^{-1}g_2}$ ist aber nur die Multiplikation mit
+einer Matrix, also eine lineare Abbildung, so dass der Kartenwechsel
+nichts anderes ist als die Darstellung der Matrix der Linksmultiplikation
+$l_{g_1^{-1}g_2}$ im Koordinatensystem der Karte $U_e$ ist.
+Differenzierbarkeit der Kartenwechsel ist damit sichergestellt,
+die Matrizengruppen sind automatisch differenzierbare Mannigfaltigkeiten.
+
+Die Konstruktion aller Karten aus einer einzigen Karte für eine
+Umgebung des neutralen Elements zeigt auch, dass es für die Matrizengruppen
+reicht, wenn man die Elemente in einer Umgebung des neutralen
+Elementes parametrisieren kann.
+Dies ist jedoch nicht nur für die Matrizengruppen möglich.
+Wenn eine Gruppe gleichzeitig eine differenzierbare Mannigfaltigkeit
+ist, dann können Karten über die ganze Gruppe transportiert werden,
+wenn die Multiplikation mit Gruppenelementen eine differenzierbare
+Abbildung ist.
+Solche Gruppen heissen auch Lie-Gruppen gemäss der folgenden Definition.
+
+\begin{definition}
+\index{Lie-Gruppe}%
+Eine {\em Lie-Gruppe} ist eine Gruppe, die gleichzeitig eine differenzierbare
+Mannigfaltigkeit ist derart, dass die Abbildungen
+\begin{align*}
+G\times G \to G &: (g_1,g_2)\mapsto g_1g_2
+\\
+G\to G &: g \mapsto g^{-1}
+\end{align*}
+differenzierbare Abbildungen zwischen Mannigfaltigkeiten sind.
+\end{definition}
+
+Die Abstraktheit dieser Definition täuscht etwas über die
+Tatsache hinweg, dass sich mit Hilfe der Darstellungstheorie
+jede beliebige Lie-Gruppe als Untermannigfaltigkeit einer
+Matrizengruppe verstehen lässt.
+Das Studium der Matrizengruppen erlaubt uns daher ohne grosse
+Einschränkungen ein Verständnis für die Theorie der Lie-Gruppen
+zu entwickeln.
+
+\subsubsection{Tangentialvektoren und die Exponentialabbildung}
+Die Matrizengruppen sind alle in der
+$n^2$-dimensionalen Mannigfaltigkeit $\operatorname{GL}_n(\mathbb{R})$
+enthalten.
+Diffferenzierbare Kurven $\gamma(t)$ in $\operatorname{GL}_n(\mathbb{R})$
+haben daher in jedem Punkt Tangentialvektoren, die als Matrizen in
+$M_n(\mathbb{R})$ betrachtet werden können.
+Wenn $\gamma(t)$ die Matrixelemente $\gamma_{ij}(t)$ hat, dann ist der
+Tangentialvektor im Punkt $\gamma(t)$ durch
+\[
+\frac{d}{dt}
+\gamma(t)
+=
+\begin{pmatrix}
+\dot{\gamma}_{11}(t)&\dots &\dot{\gamma}_{1n}(t)\\
+\vdots &\ddots&\vdots \\
+\dot{\gamma}_{n1}(t)&\dots &\dot{\gamma}_{nn}(t)
+\end{pmatrix}
+\]
+gegeben.
+
+Im Allgemeinen kann man Tangentialvektoren in verschiedenen Punkten
+einer Mannigfaltigkeit nicht miteinander vergleichen.
+Die Multiplikation $l_g$, die den Punkt $e$ in den Punkt $g$ verschiebt,
+transportiert auch die Tangentialvektoren im Punkt $e$ in
+Tangentialvektoren im Punkt $g$.
+
+\begin{aufgabe}
+Gibt es eine Kurve $\gamma(t)\in\mathbb{GL}_n(\mathbb{R})$ mit
+$\gamma(0)=e$ derart, dass der Tangentialvektor im Punkt $\gamma(t)$
+für $t>0$ derselbe ist wie der Tangentialvektor im Punkt $e$, transportiert
+durch Matrixmultiplikation mit $\gamma(t)$?
+\end{aufgabe}
+
+Eine solche Kurve muss die Differentialgleichung
+\begin{equation}
+\frac{d}{dt}\gamma(t)
+=
+\gamma(t)\cdot A
+\label{buch:gruppen:eqn:expdgl}
+\end{equation}
+erfüllen, wobei $A\in M_n(\mathbb{R})$ der gegebene Tangentialvektor
+in $e=I$ ist.
+
+Die Matrixexponentialfunktion
+\[
+e^{At}
+=
+1+At+\frac{A^2t^2}{2!}+\frac{A^3t^3}{3!}+\frac{A^4t^4}{4!}+\dots
+\]
+liefert eine Einparametergruppe
+$\mathbb{R}\to \operatorname{GL}_n(\mathbb{R})$ mit der Ableitung
+\[
+\frac{d}{dt} e^{At}
+=
+\lim_{h\to 0} \frac{e^{A(t+h)}-e^{At}}{h}
+=
+\lim_{h\to 0} e^{At}\frac{e^{Ah}-I}{h}
+=
+e^{At} A.
+\]
+Sie ist also Lösung der Differentialgleichung~\eqref{buch:gruppen:eqn:expdgl}.
+
+\subsection{Drehungen in der Ebene
+\label{buch:gruppen:drehungen2d}}
+Die Drehungen der Ebene sind die orientierungserhaltenden Symmetrien
+des Einheitskreises, der in Abbildung~\ref{buch:gruppen:fig:kartenkreis}
+als Mannigfaltigkeit erkannt wurde.
+Sie bilden eine Lie-Gruppe, die auf verschiedene Arten als Matrix
+beschrieben werden kann.
+
+\subsubsection{Die Untergruppe
+$\operatorname{SO}(2)\subset \operatorname{GL}_2(\mathbb{R})$}
+Drehungen der Ebene können in einer orthonormierten Basis durch
+Matrizen der Form
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+dargestellt werden.
+Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit
+$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$.
+Die Abbildung
+\[
+D_{\bullet}
+\colon
+\mathbb{R}\to \operatorname{SO}(2)
+:
+\alpha \mapsto D_{\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+D_{\alpha+\beta}&= D_{\alpha}D_{\beta}
+\\
+D_0&=I
+\\
+D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
+\end{align*}
+Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische
+Funktion ist.
+$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
+die Menge der Drehmatrizen in der Ebene ab.
+
+Für jedes Intervall $(a,b)\subset\mathbb{R}$ mit Länge
+$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto D_{\alpha}$ umkehrbar,
+die Umkehrung kann als Karte verwendet werden.
+Zwei verschiedene Karten $\alpha_1\colon U_1\to\mathbb{R}$ und
+$\alpha_2\colon U_2\to\mathbb{R}$ bilden die Elemente $g\in U_1\cap U_2$
+in Winkel $\alpha_1(g)$ und $\alpha_2(g)$ ab, für die
+$D_{\alpha_1(g)}=D_{\alpha_2(g)}$ gilt.
+Dies ist gleichbedeutend damit, dass $\alpha_1(g)=\alpha_2(g)+2\pi k$
+mit $k\in \mathbb{Z}$.
+In einem Intervall in $U_1\cap U_2$ muss $k$ konstant sein.
+Die Kartenwechselabblidung ist also nur die Addition eines Vielfachen
+von $2\pi$, mit der identischen Abbildung als Ableitung.
+Diese Karten führen also auf besonders einfache Kartenwechselabbildungen.
+
+\subsubsection{Die Untergruppe $S^1\subset\mathbb{C}$}
+Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen
+Ebene $\mathbb{C}$ erhalten.
+Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine
+Drehung der komplexen Ebene um den Winkel $\alpha$.
+Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung
+\[
+f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+f(\alpha+\beta) &= f(\alpha)f(\beta)
+\\
+f(0)&=1
+\\
+f(2\pi k)&=1\qquad\forall k\in\mathbb{Z},
+\end{align*}
+die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$
+analog sind.
+
+Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
+$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des
+Einheitskreises in der Ebene.
+Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
+Betrag $1$.
+$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl
+$z,w\in S^1$ gilt
+$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$.
+
+Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache
+von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$.
+Damit kann man jetzt die Abbildung
+\[
+\varphi
+\colon
+S^1\to \operatorname{SO}(2)
+:
+z\mapsto D_{\alpha(z)}
+\]
+konstruieren.
+Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
+von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche
+Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
+wohldefiniert.
+$\varphi$ erfüllt ausserdem die Bedingungen
+\begin{align*}
+\varphi(z_1z_2)
+&=
+D_{\alpha(z_1z_2)}
+=
+D_{\alpha(z_1)+\alpha(z_2)}
+=
+D_{\alpha(z_1)}D_{\alpha(z_2)}
+=
+\varphi(z_1)\varphi(z_2)
+\\
+\varphi(1)
+&=
+D_{\alpha(1)}
+=
+D_0
+=
+I
+\end{align*}
+Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$
+in die Gruppe $\operatorname{SO}(2)$.
+Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis
+in der komplexen Ebene identifiziert werden.
+
+\subsubsection{Tangentialvektoren von $\operatorname{SO}(2)$}
+Da die Gruppe $\operatorname{SO}(2)$ eine eindimensionale Gruppe
+ist, kann jede Kurve $\gamma(t)$ durch den Drehwinkel $\alpha(t)$
+mit $\gamma(t) = D_{\alpha(t)}$ beschrieben werden.
+Die Ableitung in $M_2(\mathbb{R})$ ist
+\begin{align*}
+\frac{d}{dt} \gamma(t)
+&=
+\frac{d}{d\alpha}
+\begin{pmatrix}
+\cos\alpha(t) & - \sin\alpha(t)\\
+\sin\alpha(t) & \cos\alpha(t)
+\end{pmatrix}
+\cdot
+\frac{d\alpha}{dt}
+\\
+&=
+\begin{pmatrix}
+-\sin\alpha(t)&-\cos\alpha(t)\\
+ \cos\alpha(t)&-\sin\alpha(t)
+\end{pmatrix}
+\cdot
+\dot{\alpha}(t)
+\\
+&=
+\begin{pmatrix}
+\cos\alpha(t) & - \sin\alpha(t)\\
+\sin\alpha(t) & \cos\alpha(t)
+\end{pmatrix}
+\begin{pmatrix}
+0&-1\\
+1&0
+\end{pmatrix}
+\cdot
+\dot{\alpha}(t)
+=
+D_{\alpha(t)}J\cdot\dot{\alpha}(t).
+\end{align*}
+Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $D_\alpha$
+entstehen aus $J$ durch Drehung mit der Matrix $D_\alpha$ und Skalierung
+mit $\dot{\alpha}(t)$.
+
+%
+% Isometrien von R^n
+%
+\subsection{Isometrien von $\mathbb{R}^n$
+\label{buch:gruppen:isometrien}}
+
+\subsubsection{Skalarprodukt}
+Lineare Abbildungen des Raumes $\mathbb{R}^n$ können durch
+$n\times n$-Matrizen beschrieben werden.
+Die Matrizen, die das Standardskalarprodukt $\mathbb{R}^n$ erhalten,
+bilden eine Gruppe, die in diesem Abschnitt genauer untersucht werden soll.
+Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt, wenn
+für jedes beliebige Paar $x,y$ von Vektoren gilt
+$\langle Ax,Ay\rangle = \langle x,y\rangle$.
+Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden:
+\[
+\langle Ax,Ay\rangle
+=
+(Ax)^tAy
+=
+x^tA^tAy
+=
+x^ty
+=
+\langle x,y\rangle
+\]
+für jedes Paar von Vektoren $x,y\in\mathbb{R}$.
+
+Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix
+einer Abbildung $f$ in der Standardbasis bestimmen.
+Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion
+des Vektors $v$ auf die Richtung $e_i$.
+Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$.
+Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente
+$a_{ij}=e_i^tAe_j$.
+
+\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$}
+Die Matrixelemente von $A^tA$ sind
+$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$
+sind diejenigen der Einheitsmatrix,
+die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
+Dies sind die {\em orthogonalen} Matrizen.
+Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht
+daher aus den Matrizen
+\[
+\operatorname{O}(n)
+=
+\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}.
+\]
+Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen,
+die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen
+Menge $M_n(\mathbb{R})$ auszeichnen.
+Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher
+die Dimension
+\[
+n^2 - \frac{n(n+1)}{2}
+=
+\frac{2n^2-n^2-n}{2}
+=
+\frac{n(n-1)}2.
+\]
+Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional.
+
+\subsubsection{Tangentialvektoren}
+Die orthogonalen Matrizen bilden eine abgeschlossene Untermannigfaltigkeit
+von $\operatorname{GL}_n(\mathbb{R})$, nicht jede Matrix $M_n(\mathbb{R})$
+kann also ein Tangentialvektor von $O(n)$ sein.
+Um herauszufinden, welche Matrizen als Tangentialvektoren in Frage
+kommen, betrachten wir eine Kurve $\gamma\colon\mathbb{R}\to O(n)$
+von orthogonalen Matrizen mit $\gamma(0)=I$.
+Orthogonal bedeutet
+\[
+\begin{aligned}
+&&
+0
+&=
+\frac{d}{dt}I
+=
+\frac{d}{dt}
+(\gamma(t)^t\gamma(t))
+=
+\dot{\gamma}(t)^t\gamma(t))
++
+\gamma(t)^t\dot{\gamma}(t))
+\\
+&\Rightarrow&
+0
+&=
+\dot{\gamma}(0)^t \cdot I + I\cdot \dot{\gamma(0)}
+=
+\dot{\gamma}(0)^t + \dot{\gamma}(0)
+=
+A^t+A=0
+\\
+&\Rightarrow&
+A^t&=-A
+\end{aligned}
+\]
+Die Tangentialvektoren von $\operatorname{O}(n)$ sind also genau
+die antisymmetrischen Matrizen.
+
+Für $n=2$ sind alle antisymmetrischen Matrizen Vielfache der Matrix
+$J$, wie in Abschnitt~\ref{buch:gruppen:drehungen2d}
+gezeigt wurde.
+
+Für jedes Paar $i<j$ ist die Matrix $A_{ij}$ mit den Matrixelementen
+$(A_{ij})_{ij}=-1$ und $(A_{ij})_{ji}=1$
+antisymmetrisch.
+Für $n=2$ ist $A_{12}=J$.
+Die $n(n-1)/2$ Matrizen $A_{ij}$ bilden eine Basis des
+$n(n-1)/2$-dimensionale Tangentialraumes von $\operatorname{O}(n)$.
+
+Tangentialvektoren in einem anderen Punkt $g\in\operatorname{O}(n)$
+haben die Form $gA$, wobei $A$ eine antisymmetrische Matrix ist.
+Diese Matrizen sind nur noch in speziellen Fällen antisymmetrisch,
+zum Beispiel im Punkt $-I\in\operatorname{O}(n)$.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(n)$}
+Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die
+die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen.
+Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante
+einer orthogonalen Matrix nur $\pm 1$ sein.
+Orientierungserhaltende Isometrien haben Determinante $1$.
+
+Die Gruppe
+\[
+\operatorname{SO}(n)
+=
+\{A\in\operatorname{O}(n)\;|\; \det A=1\}
+\]
+heisst die {\em spezielle orthogonale Gruppe}.
+Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(3)$}
+Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen
+Raumes hat die Dimension $3(3-1)/2=3$.
+Eine Drehung wird festgelegt durch die Richtung der Drehachse und den
+Drehwinkel.
+Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt
+auf der zweidimensionalen Kugel.
+Der Drehwinkel ist der dritte Parameter.
+
+Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden
+aus den Matrizen
+\begin{align*}
+D_{x,\alpha}
+&=
+\begin{pmatrix}
+1&0&0\\
+0&\cos\alpha&-\sin\alpha\\
+0&\sin\alpha& \cos\alpha
+\end{pmatrix},
+&
+D_{y,\beta}
+&=
+\begin{pmatrix}
+ \cos\beta&0&\sin\beta\\
+ 0 &1& 0 \\
+-\sin\beta&0&\cos\beta
+\end{pmatrix},
+&
+D_{z,\gamma}
+&=
+\begin{pmatrix}
+\cos\gamma&-\sin\gamma&0\\
+\sin\gamma& \cos\gamma&0\\
+ 0 & 0 &1
+\end{pmatrix}
+\\
+&=
+e^{A_{23}t}
+&
+&=
+e^{-A_{13}t}
+&
+&=
+e^{A_{21}t}
+\end{align*}
+die Drehungen um die Koordinatenachsen um den Winkel $\alpha$
+beschreiben.
+Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die
+drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$
+angesehen werden.
+
+%
+% Spezielle lineare Gruppe
+%
+\subsection{Volumenerhaltende Abbildungen und
+die Gruppe $\operatorname{SL}_n(\mathbb{R})$
+\label{buch:gruppen:sl}}
+Die Elemente der Gruppe $SO(n)$ erhalten Längen, Winkel und die
+Orientierung, also auch das Volumen.
+Es gibt aber volumenerhaltende Abbildungen, die Längen oder Winkel
+nicht notwendigerweise erhalten.
+Matrizen $A\in M_n(\mathbb{R})$, die das Volumen erhalten,
+haben die Determinante $\det A=1$.
+Wegen $\det(AB)=\det A\det B$ ist das Produkt zweier Matrizen mit
+Determinante $1$ wieder eine solche, sie bilden daher eine Gruppe.
+
+\begin{definition}
+Die volumenerhaltenden Abbildungen bilden die Gruppe
+\[
+\operatorname{SL}_n(\mathbb{R})
+=
+\{
+A\in M_n(\mathbb{R})
+\;|\;
+\det (A) = 1
+\}
+\]
+sie heisst die {\em spezielle lineare Gruppe}.
+\end{definition}
+
+Wir wollen jetzt die Tangentialvektoren von $\operatorname{SL}_n(\mathbb{R})$
+bestimmen.
+Dazu sei $A(t)$ eine Kurve in $\operatorname{SL}_n(\mathbb{R})$
+mit $A(0)=I$.
+Für alle $t\in\mathbb{R}$ ist $\det A(t)=1$, daher ist die Ableitung
+\[
+\frac{d}{dt} \det A(t) = 0
+\quad\text{an der Stelle $t=0$.}
+\]
+Für $n=2$ ist
+\begin{align*}
+A(t)
+&=
+\begin{pmatrix}
+a(t)&b(t)\\
+c(t)&d(t)
+\end{pmatrix}
+\in
+\operatorname{SL}_2(\mathbb{R})
+&&\Rightarrow&
+\frac{d}{dt}
+\det A(t)\bigg|_{t=0}
+&=
+\dot{a}(0) d(0)+a(0)\dot{d}(0)
+-
+\dot{b}(0) c(0)-b(0)\dot{c}(0)
+\\
+&&&&
+&=
+\dot{a}(0) + \dot{d}(0)
+\\
+&&&&
+&=
+\operatorname{Spur}\frac{dA}{dt}.
+\end{align*}
+Dies gilt nicht nur im Falle $n=2$, sondern ganz allgemein für beliebige
+$n\times n$-Matrizen.
+
+\begin{satz}
+Ist $A(t)$ eine differenzierbare Kurve in $\operatorname{SL}_n(\mathbb{B})$
+mit $A(0)=I$, dann ist $\operatorname{Spur}\dot{A}(0)=0$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Die Entwicklung der Determinante von $A$ nach der ersten Spalte ist
+\[
+\det A(t) = \sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \det A_{i1}(t).
+\]
+Die Ableitung nach $t$ ist
+\[
+\frac{d}{dt} \det A(t)
+=
+\sum_{i=1}^n (-1)^{i+1} \dot{a}_{i1}(t) \det A_{i1}(t).
++
+\sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \frac{d}{dt}\det A_{i1}(t).
+\]
+An der Stelle $t=0$ enthält $\det A_{i1}(0)$ für $i\ne 1$
+eine Nullzeile, der einzige nichtverschwindende Term in der ersten
+Summe ist daher der erste.
+In der zweiten Summe ist das einzige nicht verschwindende $a_{i1}(0)$
+jenes für $i=1$, somit ist die Ableitung von $\det A(t)$
+\begin{equation}
+\frac{d}{dt} \det A(t)
+=
+\dot{a}_{11}(t) \det A_{11}(t).
++
+\frac{d}{dt}\det A_{11}(t)
+=
+\dot{a}_{11}(0)
++
+\frac{d}{dt}\det A_{11}(t).
+\label{buch:gruppen:eqn:detspur}
+\end{equation}
+Die Beziehung \eqref{buch:gruppen:eqn:detspur} kann für einen Beweis mit
+vollständiger Induktion verwendet werden.
+
+Die Induktionsverankerung für $n=1$ besagt, dass $\det A(t)=a_{11}(t)$
+genau dann konstant $=1$ ist, wenn $\dot{a}_{11}(0)=\operatorname{Spur}A(0)$
+ist.
+Unter der Induktionsannahme, dass für eine $(n-1)\times(n-1)$-Matrix
+$\tilde{A}(t)$ mit $\tilde{A}(0)=I$ die Ableitung der Determinante
+\[
+\frac{d}{dt}\tilde{A}(0)
+=
+\operatorname{Spur}\dot{\tilde{A}}(0)
+\]
+ist, folgt jetzt mit
+\eqref{buch:gruppen:eqn:detspur}, dass
+\[
+\frac{d}{dt}A(0)
+=
+\dot{a}_{11}(0)
++
+\frac{d}{dt} \det A_{11}(t)\bigg|_{t=0}
+=
+\dot{a}_{11}(0)
++
+\operatorname{Spur}\dot{A}_{11}(0)
+=
+\operatorname{Spur}\dot{A}(0).
+\]
+Damit folgt jetzt die Behauptung für alle $n$.
+\end{proof}
+
+\begin{beispiel}
+Die Tangentialvektoren von $\operatorname{SL}_2(\mathbb{R})$ sind
+die spurlosen Matrizen
+\[
+A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
+\quad\Rightarrow\quad
+\operatorname{Spur}A=a+d=0
+\quad\Rightarrow\quad
+A=\begin{pmatrix}a&b\\c&-a\end{pmatrix}.
+\]
+Der Tangentialraum ist also dreidimensional.
+Als Basis könnte man die folgenden Vektoren verwenden:
+\begin{align*}
+A
+&=
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+&&\Rightarrow&
+e^{At}
+&=
+\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}
+\\
+B
+&=
+\begin{pmatrix}0&-1\\1&0\end{pmatrix}
+&&\Rightarrow&
+e^{Bt}
+&=
+\begin{pmatrix}
+\cos t & -\sin t\\
+\sin t & \cos t
+\end{pmatrix}
+\\
+C
+&=
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+&&\Rightarrow&
+e^{Ct}
+&=
+I + Ct + \frac{C^2t^2}{2!} + \frac{C^3t^3}{3!} + \frac{C^4t^4}{4!}+\dots
+\\
+&&&&
+&=
+I\biggl(1 + \frac{t^2}{2!} + \frac{t^4}{4!}+\dots \biggr)
++
+C\biggl(t + \frac{t^3}{3!} + \frac{t^5}{5!}+\dots \biggr)
+\\
+&&&&
+&=
+I\cosh t + C \sinh t
+=
+\begin{pmatrix}
+\cosh t & \sinh t\\
+\sinh t & \cosh t
+\end{pmatrix},
+\end{align*}
+wobei in der Auswertung der Potenzreihe für $e^{Ct}$ verwendet wurde,
+dass $C^2=I$.
+
+Die Matrizen $e^{At}$ Streckungen der einen Koordinatenachse und
+Stauchungen der anderen derart, dass das Volumen erhalten bleibt.
+Die Matrizen $e^{Bt}$ sind Drehmatrizen, die Längen und Winkel und
+damit erst recht den Flächeninhalt erhalten.
+Die Matrizen der Form $e^{Ct}$ haben die Vektoren $(1,\pm1)$ als
+Eigenvektoren:
+\begin{align*}
+\begin{pmatrix}1\\1\end{pmatrix}
+&\mapsto
+e^{Ct}
+\begin{pmatrix}1\\1\end{pmatrix}
+=
+(\cosh t +\sinh t)
+\begin{pmatrix}1\\1\end{pmatrix}
+=
+\biggl(
+\frac{e^t+e^{-t}}2
++
+\frac{e^t-e^{-t}}2
+\biggr)
+\begin{pmatrix}1\\1\end{pmatrix}
+=
+e^t
+\begin{pmatrix}1\\1\end{pmatrix}
+\\
+\begin{pmatrix}1\\-1\end{pmatrix}
+&\mapsto
+e^{Ct}
+\begin{pmatrix}1\\-1\end{pmatrix}
+=
+(\cosh t -\sinh t)
+\begin{pmatrix}1\\-1\end{pmatrix}
+=
+\biggl(
+\frac{e^t+e^{-t}}2
+-
+\frac{e^t-e^{-t}}2
+\biggr)
+\begin{pmatrix}1\\-1\end{pmatrix}
+=
+e^{-t}
+\begin{pmatrix}1\\-1\end{pmatrix}
+\end{align*}
+Die Matrizen $e^{Ct}$ strecken die Richtung $(1,1)$ um $e^t$ und
+die dazu orthogonale Richtung $(1,-1)$ um den Faktor $e^{-t}$.
+Dies ist die gegenüber $e^{At}$ um $45^\circ$ verdrehte Situation,
+auch diese Matrizen sind flächenerhaltend.
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/sl2.pdf}
+\caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen
+für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden
+linearen Abbildungen von $\mathbb{R}^2$.
+In allen drei Fällen wird ein blauer Rhombus mit den Ecken in den
+Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu
+zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten.
+In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen
+der Bilder der Standardbasisvektoren dar.
+\label{buch:gruppen:fig:sl2}}
+\end{figure}%
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/scherungen.pdf}
+\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung
+Die inken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen,
+die zugehörigen Einparameter-Untergruppen beschreiben Schwerungen.
+\label{buch:gruppen:fig:scherungen}}
+\end{figure}
+\end{beispiel}
+
+%
+% Die Gruppe SU(2)
+%
+\subsection{Die Gruppe $\operatorname{SU}(2)$
+\label{buch:gruppen:su2}}
+Die Menge der Matrizen
+\[
+\operatorname{SU}(2)
+=
+\left\{
+\left.
+A=\begin{pmatrix} a&b\\c&d\end{pmatrix}
+\;\right|\;
+a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I
+\right\}
+\]
+heisst die {\em spezielle unitäre Gruppe}.
+Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist
+$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$.
+Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte
+von $a$ und $b$ weiter ein.
+Aus
+\[
+A^*
+=
+\begin{pmatrix}
+\overline{a}&\overline{c}\\
+\overline{b}&\overline{d}
+\end{pmatrix}
+\]
+und den Bedingungen führen die Gleichungen
+\[
+\begin{aligned}
+a\overline{a}+b\overline{b}&=1
+&&\Rightarrow&|a|^2+|b|^2&=1
+\\
+a\overline{c}+b\overline{d}&=0
+&&\Rightarrow&
+\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}}
+\\
+c\overline{a}+d\overline{b}&=0
+&&\Rightarrow&
+\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}}
+\\
+c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1
+\\
+ad-bc&=1
+\end{aligned}
+\]
+Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$
+gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$.
+Damit wird die Bedingung an die Determinante zu
+\[
+1
+=
+ad-bc = at\overline{a} - b(-t\overline{b})
+=
+t(|a|^2+|b|^2)
+=
+t,
+\]
+also muss die Matrix $A$ die Form haben
+\[
+A
+=
+\begin{pmatrix}
+a&b\\
+-\overline{b}&\overline{a}
+\end{pmatrix}
+\qquad\text{mit}\quad |a|^2+|b|^2=1.
+\]
+Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$,
+dann besteht $SU(2)$ aus den Matrizen der Form
+\[
+A=
+\begin{pmatrix}
+ a_1+ia_2&b_1+ib_2\\
+-b_1+ib_2&a_1-ia_2
+\end{pmatrix}
+\]
+mit der zusätzlichen Bedingung
+\[
+|a|^2+|b|^2
+=
+a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1.
+\]
+Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer
+eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$
+eines vierdimensionalen reellen Vektorraums mit Länge $1$.
+Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen
+Kugel, die in einem vierdimensionalen Raum eingebettet ist.
+
+
+
diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index 7364c85..c0a0fb8 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -1,725 +1,725 @@ -% -% symmetrien.tex -- Geometrische Beschreibung von Symmetrien, O(n), SO(n), -% Spiegelungen -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Symmetrien -\label{buch:section:symmetrien}} -\rhead{Symmetrien} -Der geometrische Begriff der Symmetrie meint die Eigenschaft eines -geometrischen Objektes, dass es bei einer Bewegung auf sich selbst -abgebildet wird. -Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass} -bedeutet. -Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus, -dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen -der entsprechenden gespiegelten Strecken (siehe auch -Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des -Begriffs verständlich macht. -\begin{figure} -\centering -\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg} -\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen -Form geplant, wurde dann aber in modifizeirter Form gebaut. -Messungen zwischen Punkten in der rechten Hälfte des Bildes -ergeben die gleichen Werte wie Messungen entsprechenden Strecken -in der linken Hälfte, was den Begriff Symmetrie rechtfertigt. -\label{buch:lie:bild:castlehoward}} -\end{figure} -In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte -Bedeutung gegeben. -Jede Transformation eines Systems, welche bestimmte Grössen nicht -verändert, wird als Symmetrie bezeichnet. -Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den -den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt, -eine Transformation des Zeitnullpunktes oder des Ursprungs des -Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist -eine Symmetrie des Systems. - -Umgekehrt kann man fragen, welche Symmetrien ein System hat. -Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon -ausgehen, dass die Symmetrietransformationen eine Gruppe bilden. -Besonders interessant ist dies im Falle von Transformationen, die -durch Matrizen beschrieben weren. -Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine -Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der -invertierbaren Matrizen. -Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen, -denen die Elemente der Untergruppe genügen müssen. -Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine -zusätzliche geometrische Struktur, man nennt sie eine differenzierbare -Mannigfaltigkeit. -Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit} -eingeführt. -Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der -Ebene mit den Punkten eines Kreises parametrisieren lassen, -die Lösungen der Gleichung $x^2+y^2=1$ sind. - -Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare -Mannigfaltigkeit ist. -Die Existenz von geometrischen Konzepten wie Tangentialvektoren -ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht -und verstanden werden können. -Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu -schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren} -durchgeführt werden soll. - -\subsection{Algebraische Symmetrien -\label{buch:subsection:algebraische-symmetrien}} -Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem -oder in einem physikalischen System beschreiben. -Man denkt dabei gerne zuerst an geometrische Symmetrien wie die -Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene, -wie sie zum Beispiel durch die Abbildungen -\[ -\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x -\qquad\text{oder}\qquad -\mathbb{R}^3\to\mathbb{R}^3 : -\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} -\mapsto -\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix} -\] -dargestellt werden. -Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit -das Skalarprodukt erhalten sind. -Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen -zu unterscheiden. -Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle -Ebenen durch den Ursprung auf sich selbst abgebildet werden. -Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die -Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und -ihre Normale erhalten. -Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen -auf algebraische Bedingungen an die Matrixelemente führen. - -Zu jeder Abbildung $f\colon\mathbb{R}^n\to\mathbb{R}^n$, unter der -ein geometrisches Objekt in $\mathbb{R}^n$ symmetrisch ist, können wir -sofort weitere Abbildungen angeben, die ebenfalls Symmetrien sind. -Zum Beispiel sind die iterierten Abbildungen $f\circ f$, $f\circ f\circ f$ -u.~s.~w., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden, -ebenfalls Symmetrien. -Wenn die Symmetrie auch umkehrbar ist, dann gilt dies sogar für alle -$n\in\mathbb{Z}$. -Wir erhalten so eine Abbildung -$\varphi\colon \mathbb{Z}\to \operatorname{GL}_n(\mathbb{R}):n\mapsto f^n$ -mit den Eigenschaften $\varphi(0)=f^0 = I$ und -$\varphi(n+m)=f^{n+m}=f^n\circ f^m = \varphi(n)\circ\varphi(m)$. -$\varphi$ ist ein Homomorphismus der Gruppe $\mathbb{Z}$ in die Gruppe -$\operatorname{GL}_n(\mathbb{R})$. -Wir nennen dies eine {\em diskrete Symmetrie}. - -\subsection{Kontinuierliche Symmetrien -\label{buch:subsection:kontinuierliche-symmetrien}} -Von besonderem Interesse sind kontinuierliche Symmetrien. -Dies sind Abbildungen eines Systems, die von einem Parameter -abhängen. -Zum Beispiel können wir Drehungen der Ebene $\mathbb{R}^2$ um den -Winkel $\alpha$ durch Matrizen -\[ -D_{\alpha} -= -\begin{pmatrix} -\cos\alpha&-\sin\alpha\\ -\sin\alpha& \cos\alpha -\end{pmatrix} -\] -beschrieben werden. -Ein Kreis um den Nullpunkt bleibt unter jeder dieser Drehungen invariant. -Im Gegensatz dazu sind alle $3n$-Ecke mit Schwerpunkt $0$ nur invariant -unter der einen Drehung $D_{\frac{2\pi}3}$ invariant. -Die kleinste Menge, die einen vorgegebenen Punkt enthält und unter -allen Drehungen $D_\alpha$ invariant ist, ist immer ein Kreis um -den Nullpunkt. - -\begin{definition} -Ein Homomorphismus $\varphi\colon\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})$ -von der additiven Gruppe $\mathbb{R}$ in die allgemeine lineare Gruppe -heisst eine {\em Einparameter-Untergruppe} von -$\operatorname{GL}_n(\mathbb{R})$. -\end{definition} - -Die Abbildung -\[ -\varphi -\colon -\mathbb{R}\to\operatorname{GL}_n(\mathbb{R}) -: -\alpha \mapsto -D_{\alpha} -= -\begin{pmatrix} -\cos\alpha&-\sin\alpha\\ -\sin\alpha& \cos\alpha -\end{pmatrix} -\] -ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$. - -\subsubsection{Der harmonische Oszillator} -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} -\caption{Die Lösungen der -Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} -im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. -\label{chapter:gruppen:fig:phasenraum}} -\end{figure} -Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$ -schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung -\[ -m\frac{d^2}{dt^2} x(t) = -Kx(t). -\] -Die Kreisfrequenz der Schwingung ist -\[ -\omega = \sqrt{\frac{K}{m}}. -\] -Das System kann als zweidimensionales System im Phasenraum mit den -Koordinaten $x_1=x$ und $x_2=p=m\dot{x}$ beschrieben werden. -Die zweidimensionale Differentialgleichung ist -\begin{equation} -\left. -\begin{aligned} -\dot{x}(t) &= \frac{1}{m}p(t)\\ -\dot{p}(t) &= -Kx(t) -\end{aligned} -\quad -\right\} -\qquad\Rightarrow\qquad -\frac{d}{dt} -\begin{pmatrix}x(t)\\p(t)\end{pmatrix} -= -\begin{pmatrix} -0&\frac{1}{m}\\ --K&0 -\end{pmatrix} -\begin{pmatrix}x(t)\\p(t)\end{pmatrix}. -\label{chapter:gruppen:eqn:phasenraumdgl} -\end{equation} -Die Lösung der Differentialgleichung für die Anfangsbedingung $x(0)=1$ und -$p(0)=0$ ist -\[ -x(t) -= -\cos \omega t -\qquad\Rightarrow\qquad -p(t) -= --\omega \sin\omega t, -\] -die Lösung zur Anfangsbedingung $x(0)=0$ und $p(0)=1$ ist -\[ -x(t) = \frac{1}{\omega} \sin\omega t, -\qquad -p(t) = \cos \omega t. -\] -In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$ -und $p(0)=p_0$ -\begin{equation} -\begin{pmatrix} -x(t)\\ -p(t) -\end{pmatrix} -= -\underbrace{ -\begin{pmatrix} - \cos \omega t & \frac{1}{\omega} \sin\omega t \\ --\omega \sin\omega t & \cos\omega t -\end{pmatrix} -}_{\displaystyle =\Phi_t} -\begin{pmatrix}x_0\\p_0\end{pmatrix} -\label{buch:gruppen:eqn:phi} -\end{equation} -schreiben. -Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von -$\operatorname{GL}_n(\mathbb{R})$, da -\begin{align*} -\Phi_s\Phi_t -&= -\begin{pmatrix} - \cos\omega s & \frac{1}{\omega} \sin\omega s \\ --\omega \sin\omega s & \cos\omega s -\end{pmatrix} -\begin{pmatrix} - \cos\omega t & \frac{1}{\omega} \sin\omega t \\ --\omega \sin\omega t & \cos\omega t -\end{pmatrix} -\\ -&= -\begin{pmatrix} -\cos\omega s \cos\omega t - \sin\omega s \sin\omega t -& \frac{1}{\omega} ( \cos\omega s \sin\omega t + \sin\omega s \cos \omega t) -\\ --\omega (\sin\omega s \cos\omega t + \cos\omega s \sin\omega t ) -& \cos\omega s \cos\omega t -\sin\omega s \sin\omega t -\end{pmatrix} -\\ -&= -\begin{pmatrix} - \cos\omega(s+t) & \frac{1}{\omega}\sin\omega(s+t) \\ --\omega \sin\omega(s+t) & \cos\omega(s+t) -\end{pmatrix} -= -\Phi_{s+t} -\end{align*} -gilt. -Die Lösungen der -Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} -sind in Abbildung~\ref{chapter:gruppen:fig:phasenraum} -Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie -des Differentialgleichungssystems, welches den harmonischen Oszillator -beschreibt. - -\subsubsection{Fluss einer Differentialgleichung} -Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils -Matrizen in $\operatorname{GL}_n(\mathbb{R})$. -Der Grund dafür ist, dass die -Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} -linear ist. -Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$ -die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch -Linearkombination der Lösungen erhalten werden kann, also -aus der Formel -\[ -\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2. -\] -Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss. - -Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung -$\Phi$ konstruieren, die aber nicht mehr linear ist. -Sei dazu die Differentialgleichung erster Ordnung -\begin{equation} -\frac{dx}{dt} -= -f(t,x) -\qquad\text{mit}\qquad -f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n -\label{buch:gruppen:eqn:dgl} -\end{equation} -gegeben. -Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine -gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$. -Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch -bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von -$x_0$ abhängt. -Dies erlaubt eine Abbildung -\[ -\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n -: -(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) -\] -zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar -abhängt. -Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass -also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist. - -Aus der Definition lässt sich auch ableiten, dass -$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt. -$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt -und sich während der Zeit $t$ entwickelt. -$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$ -beginnt und sich während der Zeit $s$ entwickelt. -Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei -$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt. -In Formeln bedeutet dies -\[ -\Phi_{s+t} = \Phi_s\circ \Phi_t. -\] -Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus -von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren -Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$. - -\begin{definition} -Die Abbildung -\[ -\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n -: -(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) -\] -heisst der {\em Fluss} der Differentialgleichung -\eqref{buch:gruppen:eqn:dgl}, -wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$ -eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$. -\end{definition} - -Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also -der Fluss der Differentialgleichung des harmonischen Oszillators. - -\subsection{Mannigfaltigkeiten -\label{buch:subsection:mannigfaltigkeit}} -Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl} -stellt einen Zusammenhang her zwischen einem Punkt $x$ und der -Tangentialrichtung einer Bahnkurve $f(t,x)$. -Die Ableitung liefert die lineare Näherung der Bahkurve -\[ -x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h) -\] -für $h$ in einer kleinen Umgebung von $0$. -Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von -$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft. - -Diese Idee funktioniert nicht mehr zum Beispiel für eine -Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte -$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche -liegen. -Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig -ist, die Bahn auf der Kugeloberfläche zu halten. -Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für -Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind. -Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor -nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert -werden kann, er kann nur definiert werden, wenn man sich die Kugel als -in einen höherdimensionalen Raum eingebettet vorstellen kann. - -Um die Idee der Differentialgleichung auf einer beliebigen Fläche -konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung -auf eine Art zu definieren, die nicht von der Einbettung der Fläche -in den $n$-dimensionalen Raum abhängig ist. -Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit} -löst dieses Problem. - -\subsubsection{Karten} -Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem -der geographischen Länge und Breite. -Dieses Koordinatensystem funktioniert gut, solange man sich nicht an -den geographischen Polen befindet, denn deren Koordinaten sind -nicht mehr eindeutig. -Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger -geographischer Länge beschreiben den Nordpol. -Auch die Ableitung funktioniert dort nicht mehr. -Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol, -springt die Ableitung der geographischen Breite von einem positiven -Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein. -Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar, -da die meisten Reisen nicht über die Pole erfolgen. - -Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet, -kann das Problem lösen, indem er eine lokale Karte für das Gebiet -um den Pol erstellt. -Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch -ein kartesisches Koordinatensystem, er muss nur eine Methode haben, -wie er seine Koordinaten wieder auf geographische Länge und Breite -umrechnen will. -Und wenn er über Geschwindigkeiten kommunizieren will, dann muss -er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem -umrechnen können auf die Kugelkoordinaten. -Dazu muss seine Umrechnungsformel von kartesischen Koordinaten -auf Kugelkoordinaten differenzierbar sein. - -Diese Idee wird durch das Konzept der Mannigfaltigkeit verallgemeinert. -Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten, -die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren -verschiedenen Koordinatensystemen versehen werden kann. -Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge -$U\subset M$ in den Raum $\mathbb{R}^n$. -Die Komponenten dieser Abbildung heissen die {\em Koordinaten}. - -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/karten.pdf} -\caption{Karten -$\varphi_\alpha\colon U_\alpha\to \mathbb{R}^2$ -und -$\varphi_\beta\colon U_\beta\to \mathbb{R}^2$ -auf einem Torus. -Auf dem Überschneidungsgebiet $\varphi_\alpha^{-1}(U_\alpha\cap U_\beta)$ -ist der Kartenwechsel $\varphi_\beta\circ\varphi_\alpha^{-1}$ wohldefiniert -und muss differnzierbar sein, wenn eine differenzierbare Mannigfaltigkeit -entstehen soll. -\label{buch:gruppen:fig:karten}} -\end{figure} - -\begin{definition} -Eine Karte auf $M$ ist eine umkehrbare Abbildung -$\varphi\colon U\to \mathbb{R}^n$ (siehe auch -Abbildung~\ref{buch:gruppen:fig:karten}). -Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$ -derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$ -überdecken, und dass die Kartenwechsel Abbildungen -\[ -\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1} -\colon -\varphi_\alpha(U_\alpha\cap U_\beta) -\to -\varphi_\beta(U_\alpha\cap U_\beta) -\] -als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar -ist. -Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine -Menge $M$ mit einem differenzierbaren Atlas. -\end{definition} - -Karten und Atlanten regeln also nur, wie sich verschiedene lokale -Koordinatensysteme ineinander umrechnen lassen. - -\begin{beispiel} -$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn -die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein -Atlas von $M$. -\end{beispiel} - -\begin{beispiel} -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf} -\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$. -\label{buch:gruppen:fig:kartenkreis}} -\end{figure} -Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit. -Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden, -da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie -gibt. -Die Projektionen auf die einzelnen Koordinaten liefern die folgenden -vier Karten: -\begin{align*} -\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to\mathbb{R} -: -(x,y) \mapsto y -\\ -\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to\mathbb{R} -: -(x,y) \mapsto y -\\ -\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to\mathbb{R} -: -(x,y) \mapsto x -\\ -\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to\mathbb{R} -: -(x,y) \mapsto x -\end{align*} -Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten -auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie. - -Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt, -hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen -zu können. -Dasselbe gilt für $\varphi_3$ und $\varphi_4$. - -Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben -jeweils die Punkte der Kreislinie in einem Quadranten. -Die Umrechnung zwischen den Koordinaten und ihre Ableitung -ist je nach Quadrant durch -\begin{align*} -&\text{1.~Quadrant}& -\varphi_{31} -&= -\varphi_3\circ\varphi_1^{-1}\colon y\mapsto\phantom{-}\sqrt{1-y^2\mathstrut} -& -D\varphi_{31} -&= --\frac{y}{\sqrt{1-y^2\mathstrut}} -\\ -&\text{2.~Quadrant}& -\varphi_{24} -&= -\varphi_3\circ\varphi_1^{-1}\colon x\mapsto\phantom{-}\sqrt{1-x^2\mathstrut} -& -D\varphi_{24} -&= --\frac{x}{\sqrt{1-x^2\mathstrut}} -\\ -&\text{3.~Quadrant}& -\varphi_{42} -&= -\varphi_3\circ\varphi_1^{-1}\colon y\mapsto-\sqrt{1-y^2\mathstrut} -& -D\varphi_{42} -&= -\phantom{-}\frac{y}{\sqrt{1-y^2\mathstrut}} -\\ -&\text{4.~Quadrant}& -\varphi_{14} -&= -\varphi_3\circ\varphi_1^{-1}\colon x\mapsto-\sqrt{1-x^2\mathstrut} -& -D\varphi_{14} -&= -\phantom{-}\frac{x}{\sqrt{1-x^2\mathstrut}} -\end{align*} -gegeben. -Diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar, -Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen -$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten -nicht vorkommen können. -Somit bilden die vier Karten einen differenzierbaren Atlas für -die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}). -\end{beispiel} - -\begin{beispiel} -Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich -für eine $n$-di\-men\-sio\-nale Sphäre -\[ -S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\} -\] -immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen -\[ -\varphi_{i,\pm} -\colon -U_{i,\pm} -= -\{p\in S^n\;|\; \pm x_i >0\} -\to -\mathbb{R}^n -: -p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1}) -\] -konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht. -\end{beispiel} - -\subsubsection{Tangentialraum} -Mit Hilfe einer Karte $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$ -kann das Geschehen in einer Mannigfaltigkeit in den vertrauten -$n$-dimensionalen Raum $\mathbb{B}^n$ transportiert werden. -Eine Kurve $\gamma\colon \mathbb{R}\to M$, die so parametrisiert sein -soll, dass $\gamma(t)\in U_\alpha$ für $t$ in einer Umgebung $I$ von $0$ ist, -wird von der Karte in eine Kurve -$\gamma_\alpha=\varphi_\alpha\circ\gamma\colon I\to \mathbb{R}^n$ -abgebildet, -deren Tangentialvektor wieder ein Vektor in $\mathbb{R}^n$ ist. - -Eine zweite Karte $\varphi_\beta$ führt auf eine andere Kurve -mit der Parametrisierung -$\gamma_\beta=\varphi_\beta\circ\gamma\colon I \to \mathbb{R}^n$ -und einem anderen Tangentialvektor. -Die beiden Tangentialvektoren können aber mit der Ableitung der -Koordinatenwechsel-Abbildung -$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}\colon -\varphi_\alpha(U_\alpha\cap U_\beta)\to \mathbb{R}^n$ -ineinander umgerechnet werden. -Aus -\[ -\gamma_\beta -= -\varphi_\beta\circ \gamma -= -( -\varphi_\beta -\circ -\varphi_\alpha^{-1} -) -\circ -\varphi_\alpha\circ\gamma -= -\varphi_{\beta\alpha} -\circ -\varphi_\alpha\circ\gamma -= -\varphi_{\beta\alpha}\circ\gamma_\alpha -\] -folgt durch Ableitung nach dem Kurvenparameter $t$, dass -\[ -\frac{d}{dt}\gamma_\beta(t) -= -D\varphi_{\beta\alpha} -\cdot -\frac{d}{dt}\gamma_\alpha(t). -\] -Die Ableitung $D\varphi_{\beta\alpha}$ von $\varphi_{\beta\alpha}$ -an der Stelle $\gamma_\alpha(t)$ berechnet also aus dem Tangentialvektor -einer Kurve in der Karte $\varphi_\alpha$ den Tangentialvektor der -Kurve in der Karte $\varphi_\beta$. - -Die Forderung nach Differenzierbarkeit der Kartenwechselabbildungen -$\varphi_{\beta\alpha}$ stellt also nur sicher, dass die Beschreibung -eines Systemes mit Differentialgleichungen in verschiedenen -Koordinatensystemen auf die gleichen Lösungskurven in der -Mannigfaltigkeit führt. -Insbesondere ist die Verwendung von Karten ist also nur ein Werkzeug, -mit dem die Unmöglichkeit einer globalen Besschreibung einer -Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem -ohne Singularitäten umgangen werden kann. - -\begin{beispiel} -Das Beispiel des Kreises in Abbildung~\ref{buch:gruppen:fig:kartenkreis} -zeigt, dass die Tangentialvektoren je nach Karte sehr verschieden -aussehen können. -Der Tangentialvektor der Kurve $\gamma(t) = (x(t), y(t))$ im Punkt -$\gamma(t)$ ist $\dot{y}(t)$ in den Karten $\varphi_1$ und $\varphi_2$ -und $\dot{x}(t)$ in den Karten $\varphi_3$ und $\varphi_4$. - -Die spezielle Kurve $\gamma(t) = (\cos t,\sin t)$ hat in einem Punkt -$t\in (0,\frac{\pi}2)$. -in der Karte $\varphi_1$ den Tangentialvektor $\dot{y}(t)=\cos t$, -in der Karte $\varphi_3$ aber den Tangentialvektor $\dot{x}=-\sin t$. -Die Ableitung des Kartenwechsels in diesem Punkt ist die $1\times 1$-Matrix -\[ -D\varphi_{31}(\gamma(t)) -= --\frac{y(t)}{\sqrt{1-y(t)^2}} -= --\frac{\sin t}{\sqrt{1-\sin^2 t}} -= --\frac{\sin t}{\cos t} -= --\tan t. -\] -Die Koordinatenumrechnung ist gegeben durch -\[ -\dot{x}(t) -= -D\varphi_{31}(\gamma(t)) -\dot{y}(t) -\] -wird für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu -\[ -D\varphi_{31}(\gamma(t)) -\cdot -\dot{y}(t) -= --\tan t\cdot \cos t -= --\frac{\sin t}{\cos t}\cdot \cos t -= --\sin t -= -\dot{x}(t). -\qedhere -\] -\end{beispiel} - -Betrachtet man die Kreislinie als Kurve in $\mathbb{R}^2$, -dann ist der Tangentialvektor durch -$\dot{\gamma}(t)=(\dot{x}(t),\dot{y}(t))$ gegeben. -Da die Karten Projektionen auf die $x$- bzw.~$y$-Achsen sind, -entsteht der Tangentialvektor in der Karte durch Projektion -von $(\dot{x}(t),\dot{y}(t))$ auf die entsprechende Komponente. - -Die Tangentialvektoren in zwei verschiedenen Punkten der Kurve können -im Allgemeinen nicht miteinander verglichen werden. -Darüber hinweg hilft auch die Tatsache nicht, dass die Kreislinie -in den Vektorraum $\mathbb{R}^2$ eingebettet sind, wo sich Vektoren -durch Translation miteinander vergleichen lassen. -Ein nichtverschwindender Tangentialvektor im Punkt $(1,0)$ hat, -betrachtet als Vektor in $\mathbb{R}^2$ verschwindende $x$-Komponente, -für Tangentialvektoren im Inneren eines Quadranten ist dies nicht -der Fall. - -Eine Möglichkeit, einen Tangentialvektor in $(1,0)$ mit einem -Tangentialvektor im Punkt $(\cos t,\sin t)$ zu vergleichen, besteht -darin, den Vektor um den Winkel $t$ zu drehen. -Dies ist möglich, weil die Kreislinie eine kontinuierliche Symmetrie, -nämlich die Drehung um den Winkel $t$ hat, die es erlaubt, den Punkt $(1,0)$ -in den Punkt $(\cos t,\sin t)$ abzubilden. -Erst diese Symmetrie ermöglicht den Vergleich. -Dieser Ansatz ist für alle Matrizen erfolgreich, wie wir später sehen werden. - -Ein weiterer Ansatz, Tangentialvektoren zu vergleichen, ist die Idee, -einen sogenannten Zusammenhang zu definieren, eine Vorschrift, wie -Tangentialvektoren infinitesimal entlang von Kurven in der Mannigfaltigkeit -transportiert werden können. -Auf einer sogenannten {\em Riemannschen Mannigfaltigkeit} ist zusätzlich -zur Mannigfaltigkeitsstruktur die Längenmessung definiert. -Sie kann dazu verwendet werden, den Transport von Vektoren entlang einer -Kurve so zu definieren, dass dabei Längen und Winkel erhalten bleiben. -Dieser Ansatz ist die Basis der Theorie der Krümmung sogenannter -Riemannscher Mannigfaltigkeiten. - -\subsection{Der Satz von Noether -\label{buch:subsection:noether}} - - - - - - - +%
+% symmetrien.tex -- Geometrische Beschreibung von Symmetrien, O(n), SO(n),
+% Spiegelungen
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Symmetrien
+\label{buch:section:symmetrien}}
+\rhead{Symmetrien}
+Der geometrische Begriff der Symmetrie meint die Eigenschaft eines
+geometrischen Objektes, dass es bei einer Bewegung auf sich selbst
+abgebildet wird.
+Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass}
+bedeutet.
+Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus,
+dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen
+der entsprechenden gespiegelten Strecken (siehe auch
+Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des
+Begriffs verständlich macht.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg}
+\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen
+Form geplant, wurde dann aber in modifizeirter Form gebaut.
+Messungen zwischen Punkten in der rechten Hälfte des Bildes
+ergeben die gleichen Werte wie Messungen entsprechenden Strecken
+in der linken Hälfte, was den Begriff Symmetrie rechtfertigt.
+\label{buch:lie:bild:castlehoward}}
+\end{figure}
+In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte
+Bedeutung gegeben.
+Jede Transformation eines Systems, welche bestimmte Grössen nicht
+verändert, wird als Symmetrie bezeichnet.
+Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den
+den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt,
+eine Transformation des Zeitnullpunktes oder des Ursprungs des
+Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist
+eine Symmetrie des Systems.
+
+Umgekehrt kann man fragen, welche Symmetrien ein System hat.
+Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon
+ausgehen, dass die Symmetrietransformationen eine Gruppe bilden.
+Besonders interessant ist dies im Falle von Transformationen, die
+durch Matrizen beschrieben weren.
+Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine
+Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der
+invertierbaren Matrizen.
+Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen,
+denen die Elemente der Untergruppe genügen müssen.
+Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine
+zusätzliche geometrische Struktur, man nennt sie eine differenzierbare
+Mannigfaltigkeit.
+Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit}
+eingeführt.
+Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der
+Ebene mit den Punkten eines Kreises parametrisieren lassen,
+die Lösungen der Gleichung $x^2+y^2=1$ sind.
+
+Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare
+Mannigfaltigkeit ist.
+Die Existenz von geometrischen Konzepten wie Tangentialvektoren
+ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht
+und verstanden werden können.
+Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu
+schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren}
+durchgeführt werden soll.
+
+\subsection{Algebraische Symmetrien
+\label{buch:subsection:algebraische-symmetrien}}
+Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem
+oder in einem physikalischen System beschreiben.
+Man denkt dabei gerne zuerst an geometrische Symmetrien wie die
+Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene,
+wie sie zum Beispiel durch die Abbildungen
+\[
+\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x
+\qquad\text{oder}\qquad
+\mathbb{R}^3\to\mathbb{R}^3 :
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+\mapsto
+\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix}
+\]
+dargestellt werden.
+Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit
+das Skalarprodukt erhalten sind.
+Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen
+zu unterscheiden.
+Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle
+Ebenen durch den Ursprung auf sich selbst abgebildet werden.
+Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die
+Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und
+ihre Normale erhalten.
+Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen
+auf algebraische Bedingungen an die Matrixelemente führen.
+
+Zu jeder Abbildung $f\colon\mathbb{R}^n\to\mathbb{R}^n$, unter der
+ein geometrisches Objekt in $\mathbb{R}^n$ symmetrisch ist, können wir
+sofort weitere Abbildungen angeben, die ebenfalls Symmetrien sind.
+Zum Beispiel sind die iterierten Abbildungen $f\circ f$, $f\circ f\circ f$
+u.~s.~w., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden,
+ebenfalls Symmetrien.
+Wenn die Symmetrie auch umkehrbar ist, dann gilt dies sogar für alle
+$n\in\mathbb{Z}$.
+Wir erhalten so eine Abbildung
+$\varphi\colon \mathbb{Z}\to \operatorname{GL}_n(\mathbb{R}):n\mapsto f^n$
+mit den Eigenschaften $\varphi(0)=f^0 = I$ und
+$\varphi(n+m)=f^{n+m}=f^n\circ f^m = \varphi(n)\circ\varphi(m)$.
+$\varphi$ ist ein Homomorphismus der Gruppe $\mathbb{Z}$ in die Gruppe
+$\operatorname{GL}_n(\mathbb{R})$.
+Wir nennen dies eine {\em diskrete Symmetrie}.
+
+\subsection{Kontinuierliche Symmetrien
+\label{buch:subsection:kontinuierliche-symmetrien}}
+Von besonderem Interesse sind kontinuierliche Symmetrien.
+Dies sind Abbildungen eines Systems, die von einem Parameter
+abhängen.
+Zum Beispiel können wir Drehungen der Ebene $\mathbb{R}^2$ um den
+Winkel $\alpha$ durch Matrizen
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+beschrieben werden.
+Ein Kreis um den Nullpunkt bleibt unter jeder dieser Drehungen invariant.
+Im Gegensatz dazu sind alle $3n$-Ecke mit Schwerpunkt $0$ nur invariant
+unter der einen Drehung $D_{\frac{2\pi}3}$ invariant.
+Die kleinste Menge, die einen vorgegebenen Punkt enthält und unter
+allen Drehungen $D_\alpha$ invariant ist, ist immer ein Kreis um
+den Nullpunkt.
+
+\begin{definition}
+Ein Homomorphismus $\varphi\colon\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})$
+von der additiven Gruppe $\mathbb{R}$ in die allgemeine lineare Gruppe
+heisst eine {\em Einparameter-Untergruppe} von
+$\operatorname{GL}_n(\mathbb{R})$.
+\end{definition}
+
+Die Abbildung
+\[
+\varphi
+\colon
+\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})
+:
+\alpha \mapsto
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$.
+
+\subsubsection{Der harmonische Oszillator}
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/phasenraum.pdf}
+\caption{Die Lösungen der
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$.
+\label{chapter:gruppen:fig:phasenraum}}
+\end{figure}
+Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$
+schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung
+\[
+m\frac{d^2}{dt^2} x(t) = -Kx(t).
+\]
+Die Kreisfrequenz der Schwingung ist
+\[
+\omega = \sqrt{\frac{K}{m}}.
+\]
+Das System kann als zweidimensionales System im Phasenraum mit den
+Koordinaten $x_1=x$ und $x_2=p=m\dot{x}$ beschrieben werden.
+Die zweidimensionale Differentialgleichung ist
+\begin{equation}
+\left.
+\begin{aligned}
+\dot{x}(t) &= \frac{1}{m}p(t)\\
+\dot{p}(t) &= -Kx(t)
+\end{aligned}
+\quad
+\right\}
+\qquad\Rightarrow\qquad
+\frac{d}{dt}
+\begin{pmatrix}x(t)\\p(t)\end{pmatrix}
+=
+\begin{pmatrix}
+0&\frac{1}{m}\\
+-K&0
+\end{pmatrix}
+\begin{pmatrix}x(t)\\p(t)\end{pmatrix}.
+\label{chapter:gruppen:eqn:phasenraumdgl}
+\end{equation}
+Die Lösung der Differentialgleichung für die Anfangsbedingung $x(0)=1$ und
+$p(0)=0$ ist
+\[
+x(t)
+=
+\cos \omega t
+\qquad\Rightarrow\qquad
+p(t)
+=
+-\omega \sin\omega t,
+\]
+die Lösung zur Anfangsbedingung $x(0)=0$ und $p(0)=1$ ist
+\[
+x(t) = \frac{1}{\omega} \sin\omega t,
+\qquad
+p(t) = \cos \omega t.
+\]
+In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$
+und $p(0)=p_0$
+\begin{equation}
+\begin{pmatrix}
+x(t)\\
+p(t)
+\end{pmatrix}
+=
+\underbrace{
+\begin{pmatrix}
+ \cos \omega t & \frac{1}{\omega} \sin\omega t \\
+-\omega \sin\omega t & \cos\omega t
+\end{pmatrix}
+}_{\displaystyle =\Phi_t}
+\begin{pmatrix}x_0\\p_0\end{pmatrix}
+\label{buch:gruppen:eqn:phi}
+\end{equation}
+schreiben.
+Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von
+$\operatorname{GL}_n(\mathbb{R})$, da
+\begin{align*}
+\Phi_s\Phi_t
+&=
+\begin{pmatrix}
+ \cos\omega s & \frac{1}{\omega} \sin\omega s \\
+-\omega \sin\omega s & \cos\omega s
+\end{pmatrix}
+\begin{pmatrix}
+ \cos\omega t & \frac{1}{\omega} \sin\omega t \\
+-\omega \sin\omega t & \cos\omega t
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+\cos\omega s \cos\omega t - \sin\omega s \sin\omega t
+& \frac{1}{\omega} ( \cos\omega s \sin\omega t + \sin\omega s \cos \omega t)
+\\
+-\omega (\sin\omega s \cos\omega t + \cos\omega s \sin\omega t )
+& \cos\omega s \cos\omega t -\sin\omega s \sin\omega t
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+ \cos\omega(s+t) & \frac{1}{\omega}\sin\omega(s+t) \\
+-\omega \sin\omega(s+t) & \cos\omega(s+t)
+\end{pmatrix}
+=
+\Phi_{s+t}
+\end{align*}
+gilt.
+Die Lösungen der
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+sind in Abbildung~\ref{chapter:gruppen:fig:phasenraum}
+Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie
+des Differentialgleichungssystems, welches den harmonischen Oszillator
+beschreibt.
+
+\subsubsection{Fluss einer Differentialgleichung}
+Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils
+Matrizen in $\operatorname{GL}_n(\mathbb{R})$.
+Der Grund dafür ist, dass die
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+linear ist.
+Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$
+die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch
+Linearkombination der Lösungen erhalten werden kann, also
+aus der Formel
+\[
+\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2.
+\]
+Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss.
+
+Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung
+$\Phi$ konstruieren, die aber nicht mehr linear ist.
+Sei dazu die Differentialgleichung erster Ordnung
+\begin{equation}
+\frac{dx}{dt}
+=
+f(t,x)
+\qquad\text{mit}\qquad
+f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n
+\label{buch:gruppen:eqn:dgl}
+\end{equation}
+gegeben.
+Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine
+gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$.
+Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch
+bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von
+$x_0$ abhängt.
+Dies erlaubt eine Abbildung
+\[
+\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n
+:
+(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+\]
+zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar
+abhängt.
+Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass
+also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist.
+
+Aus der Definition lässt sich auch ableiten, dass
+$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt.
+$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt
+und sich während der Zeit $t$ entwickelt.
+$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$
+beginnt und sich während der Zeit $s$ entwickelt.
+Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei
+$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt.
+In Formeln bedeutet dies
+\[
+\Phi_{s+t} = \Phi_s\circ \Phi_t.
+\]
+Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus
+von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren
+Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$.
+
+\begin{definition}
+Die Abbildung
+\[
+\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n
+:
+(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+\]
+heisst der {\em Fluss} der Differentialgleichung
+\eqref{buch:gruppen:eqn:dgl},
+wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$
+eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$.
+\end{definition}
+
+Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also
+der Fluss der Differentialgleichung des harmonischen Oszillators.
+
+\subsection{Mannigfaltigkeiten
+\label{buch:subsection:mannigfaltigkeit}}
+Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl}
+stellt einen Zusammenhang her zwischen einem Punkt $x$ und der
+Tangentialrichtung einer Bahnkurve $f(t,x)$.
+Die Ableitung liefert die lineare Näherung der Bahkurve
+\[
+x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h)
+\]
+für $h$ in einer kleinen Umgebung von $0$.
+Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von
+$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft.
+
+Diese Idee funktioniert nicht mehr zum Beispiel für eine
+Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte
+$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche
+liegen.
+Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig
+ist, die Bahn auf der Kugeloberfläche zu halten.
+Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für
+Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind.
+Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor
+nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert
+werden kann, er kann nur definiert werden, wenn man sich die Kugel als
+in einen höherdimensionalen Raum eingebettet vorstellen kann.
+
+Um die Idee der Differentialgleichung auf einer beliebigen Fläche
+konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung
+auf eine Art zu definieren, die nicht von der Einbettung der Fläche
+in den $n$-dimensionalen Raum abhängig ist.
+Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit}
+löst dieses Problem.
+
+\subsubsection{Karten}
+Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem
+der geographischen Länge und Breite.
+Dieses Koordinatensystem funktioniert gut, solange man sich nicht an
+den geographischen Polen befindet, denn deren Koordinaten sind
+nicht mehr eindeutig.
+Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger
+geographischer Länge beschreiben den Nordpol.
+Auch die Ableitung funktioniert dort nicht mehr.
+Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol,
+springt die Ableitung der geographischen Breite von einem positiven
+Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein.
+Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar,
+da die meisten Reisen nicht über die Pole erfolgen.
+
+Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet,
+kann das Problem lösen, indem er eine lokale Karte für das Gebiet
+um den Pol erstellt.
+Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch
+ein kartesisches Koordinatensystem, er muss nur eine Methode haben,
+wie er seine Koordinaten wieder auf geographische Länge und Breite
+umrechnen will.
+Und wenn er über Geschwindigkeiten kommunizieren will, dann muss
+er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem
+umrechnen können auf die Kugelkoordinaten.
+Dazu muss seine Umrechnungsformel von kartesischen Koordinaten
+auf Kugelkoordinaten differenzierbar sein.
+
+Diese Idee wird durch das Konzept der Mannigfaltigkeit verallgemeinert.
+Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten,
+die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren
+verschiedenen Koordinatensystemen versehen werden kann.
+Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge
+$U\subset M$ in den Raum $\mathbb{R}^n$.
+Die Komponenten dieser Abbildung heissen die {\em Koordinaten}.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/karten.pdf}
+\caption{Karten
+$\varphi_\alpha\colon U_\alpha\to \mathbb{R}^2$
+und
+$\varphi_\beta\colon U_\beta\to \mathbb{R}^2$
+auf einem Torus.
+Auf dem Überschneidungsgebiet $\varphi_\alpha^{-1}(U_\alpha\cap U_\beta)$
+ist der Kartenwechsel $\varphi_\beta\circ\varphi_\alpha^{-1}$ wohldefiniert
+und muss differnzierbar sein, wenn eine differenzierbare Mannigfaltigkeit
+entstehen soll.
+\label{buch:gruppen:fig:karten}}
+\end{figure}
+
+\begin{definition}
+Eine Karte auf $M$ ist eine umkehrbare Abbildung
+$\varphi\colon U\to \mathbb{R}^n$ (siehe auch
+Abbildung~\ref{buch:gruppen:fig:karten}).
+Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$
+derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$
+überdecken, und dass die Kartenwechsel Abbildungen
+\[
+\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}
+\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)
+\to
+\varphi_\beta(U_\alpha\cap U_\beta)
+\]
+als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar
+ist.
+Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine
+Menge $M$ mit einem differenzierbaren Atlas.
+\end{definition}
+
+Karten und Atlanten regeln also nur, wie sich verschiedene lokale
+Koordinatensysteme ineinander umrechnen lassen.
+
+\begin{beispiel}
+$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn
+die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein
+Atlas von $M$.
+\end{beispiel}
+
+\begin{beispiel}
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf}
+\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$.
+\label{buch:gruppen:fig:kartenkreis}}
+\end{figure}
+Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit.
+Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden,
+da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie
+gibt.
+Die Projektionen auf die einzelnen Koordinaten liefern die folgenden
+vier Karten:
+\begin{align*}
+\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to\mathbb{R}
+:
+(x,y) \mapsto y
+\\
+\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to\mathbb{R}
+:
+(x,y) \mapsto y
+\\
+\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to\mathbb{R}
+:
+(x,y) \mapsto x
+\\
+\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to\mathbb{R}
+:
+(x,y) \mapsto x
+\end{align*}
+Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten
+auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie.
+
+Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt,
+hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen
+zu können.
+Dasselbe gilt für $\varphi_3$ und $\varphi_4$.
+
+Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben
+jeweils die Punkte der Kreislinie in einem Quadranten.
+Die Umrechnung zwischen den Koordinaten und ihre Ableitung
+ist je nach Quadrant durch
+\begin{align*}
+&\text{1.~Quadrant}&
+\varphi_{31}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon y\mapsto\phantom{-}\sqrt{1-y^2\mathstrut}
+&
+D\varphi_{31}
+&=
+-\frac{y}{\sqrt{1-y^2\mathstrut}}
+\\
+&\text{2.~Quadrant}&
+\varphi_{24}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon x\mapsto\phantom{-}\sqrt{1-x^2\mathstrut}
+&
+D\varphi_{24}
+&=
+-\frac{x}{\sqrt{1-x^2\mathstrut}}
+\\
+&\text{3.~Quadrant}&
+\varphi_{42}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon y\mapsto-\sqrt{1-y^2\mathstrut}
+&
+D\varphi_{42}
+&=
+\phantom{-}\frac{y}{\sqrt{1-y^2\mathstrut}}
+\\
+&\text{4.~Quadrant}&
+\varphi_{14}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon x\mapsto-\sqrt{1-x^2\mathstrut}
+&
+D\varphi_{14}
+&=
+\phantom{-}\frac{x}{\sqrt{1-x^2\mathstrut}}
+\end{align*}
+gegeben.
+Diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar,
+Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen
+$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten
+nicht vorkommen können.
+Somit bilden die vier Karten einen differenzierbaren Atlas für
+die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}).
+\end{beispiel}
+
+\begin{beispiel}
+Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich
+für eine $n$-di\-men\-sio\-nale Sphäre
+\[
+S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\}
+\]
+immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen
+\[
+\varphi_{i,\pm}
+\colon
+U_{i,\pm}
+=
+\{p\in S^n\;|\; \pm x_i >0\}
+\to
+\mathbb{R}^n
+:
+p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1})
+\]
+konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht.
+\end{beispiel}
+
+\subsubsection{Tangentialraum}
+Mit Hilfe einer Karte $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
+kann das Geschehen in einer Mannigfaltigkeit in den vertrauten
+$n$-dimensionalen Raum $\mathbb{B}^n$ transportiert werden.
+Eine Kurve $\gamma\colon \mathbb{R}\to M$, die so parametrisiert sein
+soll, dass $\gamma(t)\in U_\alpha$ für $t$ in einer Umgebung $I$ von $0$ ist,
+wird von der Karte in eine Kurve
+$\gamma_\alpha=\varphi_\alpha\circ\gamma\colon I\to \mathbb{R}^n$
+abgebildet,
+deren Tangentialvektor wieder ein Vektor in $\mathbb{R}^n$ ist.
+
+Eine zweite Karte $\varphi_\beta$ führt auf eine andere Kurve
+mit der Parametrisierung
+$\gamma_\beta=\varphi_\beta\circ\gamma\colon I \to \mathbb{R}^n$
+und einem anderen Tangentialvektor.
+Die beiden Tangentialvektoren können aber mit der Ableitung der
+Koordinatenwechsel-Abbildung
+$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)\to \mathbb{R}^n$
+ineinander umgerechnet werden.
+Aus
+\[
+\gamma_\beta
+=
+\varphi_\beta\circ \gamma
+=
+(
+\varphi_\beta
+\circ
+\varphi_\alpha^{-1}
+)
+\circ
+\varphi_\alpha\circ\gamma
+=
+\varphi_{\beta\alpha}
+\circ
+\varphi_\alpha\circ\gamma
+=
+\varphi_{\beta\alpha}\circ\gamma_\alpha
+\]
+folgt durch Ableitung nach dem Kurvenparameter $t$, dass
+\[
+\frac{d}{dt}\gamma_\beta(t)
+=
+D\varphi_{\beta\alpha}
+\cdot
+\frac{d}{dt}\gamma_\alpha(t).
+\]
+Die Ableitung $D\varphi_{\beta\alpha}$ von $\varphi_{\beta\alpha}$
+an der Stelle $\gamma_\alpha(t)$ berechnet also aus dem Tangentialvektor
+einer Kurve in der Karte $\varphi_\alpha$ den Tangentialvektor der
+Kurve in der Karte $\varphi_\beta$.
+
+Die Forderung nach Differenzierbarkeit der Kartenwechselabbildungen
+$\varphi_{\beta\alpha}$ stellt also nur sicher, dass die Beschreibung
+eines Systemes mit Differentialgleichungen in verschiedenen
+Koordinatensystemen auf die gleichen Lösungskurven in der
+Mannigfaltigkeit führt.
+Insbesondere ist die Verwendung von Karten ist also nur ein Werkzeug,
+mit dem die Unmöglichkeit einer globalen Besschreibung einer
+Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem
+ohne Singularitäten umgangen werden kann.
+
+\begin{beispiel}
+Das Beispiel des Kreises in Abbildung~\ref{buch:gruppen:fig:kartenkreis}
+zeigt, dass die Tangentialvektoren je nach Karte sehr verschieden
+aussehen können.
+Der Tangentialvektor der Kurve $\gamma(t) = (x(t), y(t))$ im Punkt
+$\gamma(t)$ ist $\dot{y}(t)$ in den Karten $\varphi_1$ und $\varphi_2$
+und $\dot{x}(t)$ in den Karten $\varphi_3$ und $\varphi_4$.
+
+Die spezielle Kurve $\gamma(t) = (\cos t,\sin t)$ hat in einem Punkt
+$t\in (0,\frac{\pi}2)$.
+in der Karte $\varphi_1$ den Tangentialvektor $\dot{y}(t)=\cos t$,
+in der Karte $\varphi_3$ aber den Tangentialvektor $\dot{x}=-\sin t$.
+Die Ableitung des Kartenwechsels in diesem Punkt ist die $1\times 1$-Matrix
+\[
+D\varphi_{31}(\gamma(t))
+=
+-\frac{y(t)}{\sqrt{1-y(t)^2}}
+=
+-\frac{\sin t}{\sqrt{1-\sin^2 t}}
+=
+-\frac{\sin t}{\cos t}
+=
+-\tan t.
+\]
+Die Koordinatenumrechnung ist gegeben durch
+\[
+\dot{x}(t)
+=
+D\varphi_{31}(\gamma(t))
+\dot{y}(t)
+\]
+wird für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu
+\[
+D\varphi_{31}(\gamma(t))
+\cdot
+\dot{y}(t)
+=
+-\tan t\cdot \cos t
+=
+-\frac{\sin t}{\cos t}\cdot \cos t
+=
+-\sin t
+=
+\dot{x}(t).
+\qedhere
+\]
+\end{beispiel}
+
+Betrachtet man die Kreislinie als Kurve in $\mathbb{R}^2$,
+dann ist der Tangentialvektor durch
+$\dot{\gamma}(t)=(\dot{x}(t),\dot{y}(t))$ gegeben.
+Da die Karten Projektionen auf die $x$- bzw.~$y$-Achsen sind,
+entsteht der Tangentialvektor in der Karte durch Projektion
+von $(\dot{x}(t),\dot{y}(t))$ auf die entsprechende Komponente.
+
+Die Tangentialvektoren in zwei verschiedenen Punkten der Kurve können
+im Allgemeinen nicht miteinander verglichen werden.
+Darüber hinweg hilft auch die Tatsache nicht, dass die Kreislinie
+in den Vektorraum $\mathbb{R}^2$ eingebettet sind, wo sich Vektoren
+durch Translation miteinander vergleichen lassen.
+Ein nichtverschwindender Tangentialvektor im Punkt $(1,0)$ hat,
+betrachtet als Vektor in $\mathbb{R}^2$ verschwindende $x$-Komponente,
+für Tangentialvektoren im Inneren eines Quadranten ist dies nicht
+der Fall.
+
+Eine Möglichkeit, einen Tangentialvektor in $(1,0)$ mit einem
+Tangentialvektor im Punkt $(\cos t,\sin t)$ zu vergleichen, besteht
+darin, den Vektor um den Winkel $t$ zu drehen.
+Dies ist möglich, weil die Kreislinie eine kontinuierliche Symmetrie,
+nämlich die Drehung um den Winkel $t$ hat, die es erlaubt, den Punkt $(1,0)$
+in den Punkt $(\cos t,\sin t)$ abzubilden.
+Erst diese Symmetrie ermöglicht den Vergleich.
+Dieser Ansatz ist für alle Matrizen erfolgreich, wie wir später sehen werden.
+
+Ein weiterer Ansatz, Tangentialvektoren zu vergleichen, ist die Idee,
+einen sogenannten Zusammenhang zu definieren, eine Vorschrift, wie
+Tangentialvektoren infinitesimal entlang von Kurven in der Mannigfaltigkeit
+transportiert werden können.
+Auf einer sogenannten {\em Riemannschen Mannigfaltigkeit} ist zusätzlich
+zur Mannigfaltigkeitsstruktur die Längenmessung definiert.
+Sie kann dazu verwendet werden, den Transport von Vektoren entlang einer
+Kurve so zu definieren, dass dabei Längen und Winkel erhalten bleiben.
+Dieser Ansatz ist die Basis der Theorie der Krümmung sogenannter
+Riemannscher Mannigfaltigkeiten.
+
+\subsection{Der Satz von Noether
+\label{buch:subsection:noether}}
+
+
+
+
+
+
+
diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex index 2acf6f6..5c973fd 100644 --- a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex @@ -1,233 +1,233 @@ -Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$ -um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$ -ist gegeben durch $D_\alpha\vec{x}+\vec{t}$. -Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht -darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation -schreiben. -Die Drehung und Translation kann in eine Matrix zusammengefasst werden, -indem zunächst die Ebene mit -\[ -\mathbb{R}^2\to\mathbb{R}^3 -: -\begin{pmatrix}x\\y\end{pmatrix} -\mapsto -\begin{pmatrix}x\\y\\1\end{pmatrix} -\qquad\text{oder in Vektorschreibweise }\qquad -\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix} -\] -in den dreidimensionalen Raum eingebettet wird. -Die Drehung und Verschiebung kann damit in der Form -\[ -\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1 -\end{pmatrix} -= -\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix} -\begin{pmatrix}\vec{x}\\1\end{pmatrix} -\] -als Matrizenoperation geschrieben werden. -Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher -die Gruppe -\[ -G -= -\left\{ -\left. -A -= -\begin{pmatrix} -D_\alpha&\vec{t}\\ -0&1 -\end{pmatrix} -= -\begin{pmatrix} -\cos\alpha & -\sin\alpha & t_x \\ -\sin\alpha & \cos\alpha & t_y \\ - 0 & 0 & 1 -\end{pmatrix} -\; -\right| -\; -\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2 -\right\} -\] -Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab. -\begin{teilaufgaben} -\item -Verifizieren Sie, dass das Produkt zweier solcher Matrizen -$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$ -wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie -$\alpha$ und $\vec{t}_j$. -\item -Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$. -\item -Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$ -und die Translationskomponenten $t_x$ und $t_y$. -Rechnen Sie nach, dass -\[ -\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix}, -\quad -t_x\mapsto -\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}, -\qquad -t_y\mapsto -\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} -\] -Einparameteruntergruppen von $G$ sind. -\item -Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$, -die zu den Einparameteruntergruppen von c) gehören. -\item -Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren. -\end{teilaufgaben} - -\begin{loesung} -\begin{teilaufgaben} -\item -Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist -\begin{align*} -\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} -\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix} -\begin{pmatrix}\vec{x}\\1\end{pmatrix} -&= -\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} -\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix} -= -\begin{pmatrix} -D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1 -\end{pmatrix} -\\ -&= -\begin{pmatrix} -D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1 -\end{pmatrix} -= -\begin{pmatrix} -D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\ -0&1 -\end{pmatrix} -\begin{pmatrix}\vec{x}\\1\end{pmatrix}. -\end{align*} -Das Produkt in der Gruppe $G$ kann daher -\[ -(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2) -= -(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2) -\] -geschrieben werden. -\item -Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$ -kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$ -auflöst: -\begin{align*} -\vec{y}&=D_\alpha\vec{x}+\vec{t} -&&\Rightarrow& -D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x} -\\ -&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t}) -\end{align*} -Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$. -\item -Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist, -ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe. -Für die beiden anderen gilt -\[ -\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr) -\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr) -= -\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr) -\quad\text{und}\quad -\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr) -\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr) -= -\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr), -\] -also sind dies auch Einparameteruntergruppen. -\item -Die Ableitungen sind -\begin{align*} -D -&= -\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0} -= -\begin{pmatrix}J&0\\0&0\end{pmatrix} -= -\begin{pmatrix} -0&-1&0\\ -1& 0&0\\ -0& 0&0 -\end{pmatrix} -\\ -X -&= -\frac{d}{dt_x} -\left. -\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix} -\right|_{t_x=0} -= -\begin{pmatrix} -0&0&1\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -& -Y -&= -\frac{d}{dt_y} -\left. -\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} -\right|_{t_y=0} -= -\begin{pmatrix} -0&0&0\\ -0&0&1\\ -0&0&0 -\end{pmatrix} -\end{align*} -\item -Die Vertauschungsrelationen sind -\begin{align*} -[D,X] -&= -DX-XD -= -\begin{pmatrix} -0&0&0\\ -0&0&1\\ -0&0&0 -\end{pmatrix} -- -\begin{pmatrix} -0&0&0\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -= -Y -\\ -[D,Y] -&= -DY-YD -= -\begin{pmatrix} -0&0&-1\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -- -\begin{pmatrix} -0&0&0\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -= --X -\\ -[X,Y] -&= -XY-YX -= -0-0=0 -\qedhere -\end{align*} -\end{teilaufgaben} -\end{loesung} +Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$
+um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$
+ist gegeben durch $D_\alpha\vec{x}+\vec{t}$.
+Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht
+darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation
+schreiben.
+Die Drehung und Translation kann in eine Matrix zusammengefasst werden,
+indem zunächst die Ebene mit
+\[
+\mathbb{R}^2\to\mathbb{R}^3
+:
+\begin{pmatrix}x\\y\end{pmatrix}
+\mapsto
+\begin{pmatrix}x\\y\\1\end{pmatrix}
+\qquad\text{oder in Vektorschreibweise }\qquad
+\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+\]
+in den dreidimensionalen Raum eingebettet wird.
+Die Drehung und Verschiebung kann damit in der Form
+\[
+\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1
+\end{pmatrix}
+=
+\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix}
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+\]
+als Matrizenoperation geschrieben werden.
+Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher
+die Gruppe
+\[
+G
+=
+\left\{
+\left.
+A
+=
+\begin{pmatrix}
+D_\alpha&\vec{t}\\
+0&1
+\end{pmatrix}
+=
+\begin{pmatrix}
+\cos\alpha & -\sin\alpha & t_x \\
+\sin\alpha & \cos\alpha & t_y \\
+ 0 & 0 & 1
+\end{pmatrix}
+\;
+\right|
+\;
+\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2
+\right\}
+\]
+Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab.
+\begin{teilaufgaben}
+\item
+Verifizieren Sie, dass das Produkt zweier solcher Matrizen
+$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$
+wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie
+$\alpha$ und $\vec{t}_j$.
+\item
+Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$.
+\item
+Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$
+und die Translationskomponenten $t_x$ und $t_y$.
+Rechnen Sie nach, dass
+\[
+\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix},
+\quad
+t_x\mapsto
+\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix},
+\qquad
+t_y\mapsto
+\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix}
+\]
+Einparameteruntergruppen von $G$ sind.
+\item
+Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$,
+die zu den Einparameteruntergruppen von c) gehören.
+\item
+Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren.
+\end{teilaufgaben}
+
+\begin{loesung}
+\begin{teilaufgaben}
+\item
+Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist
+\begin{align*}
+\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix}
+\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix}
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+&=
+\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix}
+\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix}
+=
+\begin{pmatrix}
+D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1
+\end{pmatrix}
+=
+\begin{pmatrix}
+D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\
+0&1
+\end{pmatrix}
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}.
+\end{align*}
+Das Produkt in der Gruppe $G$ kann daher
+\[
+(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2)
+=
+(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2)
+\]
+geschrieben werden.
+\item
+Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$
+kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$
+auflöst:
+\begin{align*}
+\vec{y}&=D_\alpha\vec{x}+\vec{t}
+&&\Rightarrow&
+D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x}
+\\
+&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t})
+\end{align*}
+Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$.
+\item
+Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist,
+ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe.
+Für die beiden anderen gilt
+\[
+\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr)
+\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr)
+=
+\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr)
+\quad\text{und}\quad
+\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr)
+\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr)
+=
+\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr),
+\]
+also sind dies auch Einparameteruntergruppen.
+\item
+Die Ableitungen sind
+\begin{align*}
+D
+&=
+\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0}
+=
+\begin{pmatrix}J&0\\0&0\end{pmatrix}
+=
+\begin{pmatrix}
+0&-1&0\\
+1& 0&0\\
+0& 0&0
+\end{pmatrix}
+\\
+X
+&=
+\frac{d}{dt_x}
+\left.
+\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}
+\right|_{t_x=0}
+=
+\begin{pmatrix}
+0&0&1\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+&
+Y
+&=
+\frac{d}{dt_y}
+\left.
+\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix}
+\right|_{t_y=0}
+=
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&0&0
+\end{pmatrix}
+\end{align*}
+\item
+Die Vertauschungsrelationen sind
+\begin{align*}
+[D,X]
+&=
+DX-XD
+=
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&0&0
+\end{pmatrix}
+-
+\begin{pmatrix}
+0&0&0\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+=
+Y
+\\
+[D,Y]
+&=
+DY-YD
+=
+\begin{pmatrix}
+0&0&-1\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+-
+\begin{pmatrix}
+0&0&0\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+=
+-X
+\\
+[X,Y]
+&=
+XY-YX
+=
+0-0=0
+\qedhere
+\end{align*}
+\end{teilaufgaben}
+\end{loesung}
diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex index 14fbe2b..25ac535 100644 --- a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex @@ -1,162 +1,162 @@ -Die Elemente der Gruppe $G$ der Translationen und Streckungen von -$\mathbb{R}$ kann durch Paare $(\lambda,t)\in\mathbb{R}^+\times\mathbb{R}$ -beschrieben werden, -wobei $\lambda$ durch Streckung und $t$ durch Translation wirkt: -\[ -(\lambda,t)\colon \mathbb{R}\to\mathbb{R}: x\mapsto \lambda x+t. -\] -Dies ist allerdings noch keine Untergruppe einer Matrizengruppe. -Dazu bettet man $\mathbb{R}$ mit Hilfe der Abbildung -\[ -\mathbb{R}\to\mathbb{R}^2 : x\mapsto \begin{pmatrix}x\\1\end{pmatrix} -\] -in $\mathbb{R}^2$ ein. -Die Wirkung von $(\lambda,t)$ ist dann -\[ -\begin{pmatrix}(\lambda,t)\cdot x\\1\end{pmatrix} -= -\begin{pmatrix} \lambda x + t\\1\end{pmatrix} -= -\begin{pmatrix}\lambda&1\\0&1\end{pmatrix}\begin{pmatrix}x\\1\end{pmatrix}. -\] -Die Wirkung des Paares $(\lambda,t)$ kann also mit Hilfe einer -$2\times 2$-Matrix beschrieben werden. -Die Abbildung -\[ -G\to \operatorname{GL}_2(\mathbb{R}) -: -(\lambda,t) -\mapsto -\begin{pmatrix}\lambda&t\\0&1\end{pmatrix} -\] -bettet die Gruppe $G$ in $\operatorname{GL}_2(\mathbb{R})$ ein. -\begin{teilaufgaben} -\item -Berechnen Sie das Produkt $g_1g_2$ zweier Elemente -$g_j=(\lambda_j,t_j)$. -\item -Bestimmen Sie das inverse Elemente von $(\lambda,t)$ in $G$. -\item -Der sogenannte Kommutator zweier Elemente ist $g_1g_2g_1^{-1}g_2^{-1}$, -berechnen Sie den Kommutator für die Gruppenelemente von a). -\item -Rechnen Sie nach, dass -\[ -s\mapsto \begin{pmatrix}e^s&0\\0&1\end{pmatrix} -,\qquad -t\mapsto \begin{pmatrix}1&t\\0&1\end{pmatrix} -\] -Einparameteruntergruppen von $\operatorname{GL}_2(\mathbb{R})$ sind. -\item -Berechnen Sie die Tangentialvektoren $S$ und $T$ dieser beiden -Einparameteruntergruppen. -\item -Berechnen Sie den Kommutator $[S,T]$ -\end{teilaufgaben} - -\begin{loesung} -\begin{teilaufgaben} -\item -Die beiden Gruppenelemente wirken auf $x$ nach -\[ -(\lambda_1,t_1) -(\lambda_2,t_2) -\cdot -x -= -(\lambda_1,t_1)(\lambda_2x+t_2) -= -\lambda_1(\lambda_2x+t_2)+t_1) -= -\lambda_1\lambda_2 x + (\lambda_1t_2+t_1), -\] -also ist $g_1g_2=(\lambda_1\lambda_2,\lambda_1t_2+t_1)$. -\item -Die Inverse von $(\lambda,t)$ kann erhalten werden, indem man die -Abbildung $x\mapsto y=\lambda x +t$ nach $x$ auflöst: -\[ -y=\lambda x+t -\qquad\Rightarrow\qquad -\lambda^{-1}(y-t) -= -\lambda^{-1}y - \lambda^{-1}t. -\] -Daraus liest man ab, dass $(\lambda,t)^{-1}=(\lambda^{-1},-\lambda^{-1}t)$ -ist. -\item -Mit Hilfe der Identität $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(g_2g_1)^{-1}$ -kann man den Kommutator leichter berechnen -\begin{align*} -g_1g_2&=(\lambda_1\lambda_2,t_1+\lambda_1t_2) -\\ -g_2g_1&= (\lambda_2\lambda_1,t_2+\lambda_2t_1) -\\ -(g_2g_1)^{-1} -&= -(\lambda_1^{-1}\lambda_2^{-1}, - -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) -\\ -g_1g_2g_1^{-1}g_2^{-1} -&= -(\lambda_1\lambda_2,t_1+\lambda_1t_2) -(\lambda_1^{-1}\lambda_2^{-1}, - -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) -\\ -&=(1,t_1+\lambda_1t_2 + \lambda_1\lambda_2( - -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) -) -\\ -&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1) -= -(1,(1-\lambda_2)(t_1-t_2)). -\end{align*} -Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist. -\item -Dies ist am einfachsten in der Matrixform nachzurechnen: -\begin{align*} -\begin{pmatrix} e^{s_1}&0\\0&1\end{pmatrix} -\begin{pmatrix} e^{s_2}&0\\0&1\end{pmatrix} -&= -\begin{pmatrix}e^{s_1+s_2}&0\\0&1\end{pmatrix} -& -\begin{pmatrix} 1&t_1\\0&1\end{pmatrix} -\begin{pmatrix} 1&t_2\\0&1\end{pmatrix} -&= -\begin{pmatrix} 1&t_1+t_2\\0&1\end{pmatrix} -\end{align*} -\item -Die Tangentialvektoren werden erhalten durch ableiten der -Matrixdarstellung nach dem Parameter -\begin{align*} -S -&= -\frac{d}{ds} \begin{pmatrix}e^s&0\\0&1\end{pmatrix}\bigg|_{s=0} -= -\begin{pmatrix}1&0\\0&0\end{pmatrix} -\\ -T -&= -\frac{d}{dt} \begin{pmatrix}1&t\\0&1\end{pmatrix}\bigg|_{t=0} -= -\begin{pmatrix}0&1\\0&0\end{pmatrix} -\end{align*} -\item Der Kommutator ist -\[ -[S,T] -= -\begin{pmatrix}1&0\\0&0\end{pmatrix} -\begin{pmatrix}0&1\\0&0\end{pmatrix} -- -\begin{pmatrix}0&1\\0&0\end{pmatrix} -\begin{pmatrix}1&0\\0&0\end{pmatrix} -= -\begin{pmatrix}0&1\\0&0\end{pmatrix} -- -\begin{pmatrix}0&0\\0&0\end{pmatrix} -= -T. -\qedhere -\] -\end{teilaufgaben} -\end{loesung} - +Die Elemente der Gruppe $G$ der Translationen und Streckungen von
+$\mathbb{R}$ kann durch Paare $(\lambda,t)\in\mathbb{R}^+\times\mathbb{R}$
+beschrieben werden,
+wobei $\lambda$ durch Streckung und $t$ durch Translation wirkt:
+\[
+(\lambda,t)\colon \mathbb{R}\to\mathbb{R}: x\mapsto \lambda x+t.
+\]
+Dies ist allerdings noch keine Untergruppe einer Matrizengruppe.
+Dazu bettet man $\mathbb{R}$ mit Hilfe der Abbildung
+\[
+\mathbb{R}\to\mathbb{R}^2 : x\mapsto \begin{pmatrix}x\\1\end{pmatrix}
+\]
+in $\mathbb{R}^2$ ein.
+Die Wirkung von $(\lambda,t)$ ist dann
+\[
+\begin{pmatrix}(\lambda,t)\cdot x\\1\end{pmatrix}
+=
+\begin{pmatrix} \lambda x + t\\1\end{pmatrix}
+=
+\begin{pmatrix}\lambda&1\\0&1\end{pmatrix}\begin{pmatrix}x\\1\end{pmatrix}.
+\]
+Die Wirkung des Paares $(\lambda,t)$ kann also mit Hilfe einer
+$2\times 2$-Matrix beschrieben werden.
+Die Abbildung
+\[
+G\to \operatorname{GL}_2(\mathbb{R})
+:
+(\lambda,t)
+\mapsto
+\begin{pmatrix}\lambda&t\\0&1\end{pmatrix}
+\]
+bettet die Gruppe $G$ in $\operatorname{GL}_2(\mathbb{R})$ ein.
+\begin{teilaufgaben}
+\item
+Berechnen Sie das Produkt $g_1g_2$ zweier Elemente
+$g_j=(\lambda_j,t_j)$.
+\item
+Bestimmen Sie das inverse Elemente von $(\lambda,t)$ in $G$.
+\item
+Der sogenannte Kommutator zweier Elemente ist $g_1g_2g_1^{-1}g_2^{-1}$,
+berechnen Sie den Kommutator für die Gruppenelemente von a).
+\item
+Rechnen Sie nach, dass
+\[
+s\mapsto \begin{pmatrix}e^s&0\\0&1\end{pmatrix}
+,\qquad
+t\mapsto \begin{pmatrix}1&t\\0&1\end{pmatrix}
+\]
+Einparameteruntergruppen von $\operatorname{GL}_2(\mathbb{R})$ sind.
+\item
+Berechnen Sie die Tangentialvektoren $S$ und $T$ dieser beiden
+Einparameteruntergruppen.
+\item
+Berechnen Sie den Kommutator $[S,T]$
+\end{teilaufgaben}
+
+\begin{loesung}
+\begin{teilaufgaben}
+\item
+Die beiden Gruppenelemente wirken auf $x$ nach
+\[
+(\lambda_1,t_1)
+(\lambda_2,t_2)
+\cdot
+x
+=
+(\lambda_1,t_1)(\lambda_2x+t_2)
+=
+\lambda_1(\lambda_2x+t_2)+t_1)
+=
+\lambda_1\lambda_2 x + (\lambda_1t_2+t_1),
+\]
+also ist $g_1g_2=(\lambda_1\lambda_2,\lambda_1t_2+t_1)$.
+\item
+Die Inverse von $(\lambda,t)$ kann erhalten werden, indem man die
+Abbildung $x\mapsto y=\lambda x +t$ nach $x$ auflöst:
+\[
+y=\lambda x+t
+\qquad\Rightarrow\qquad
+\lambda^{-1}(y-t)
+=
+\lambda^{-1}y - \lambda^{-1}t.
+\]
+Daraus liest man ab, dass $(\lambda,t)^{-1}=(\lambda^{-1},-\lambda^{-1}t)$
+ist.
+\item
+Mit Hilfe der Identität $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(g_2g_1)^{-1}$
+kann man den Kommutator leichter berechnen
+\begin{align*}
+g_1g_2&=(\lambda_1\lambda_2,t_1+\lambda_1t_2)
+\\
+g_2g_1&= (\lambda_2\lambda_1,t_2+\lambda_2t_1)
+\\
+(g_2g_1)^{-1}
+&=
+(\lambda_1^{-1}\lambda_2^{-1},
+ -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
+\\
+g_1g_2g_1^{-1}g_2^{-1}
+&=
+(\lambda_1\lambda_2,t_1+\lambda_1t_2)
+(\lambda_1^{-1}\lambda_2^{-1},
+ -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
+\\
+&=(1,t_1+\lambda_1t_2 + \lambda_1\lambda_2(
+ -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
+)
+\\
+&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1)
+=
+(1,(1-\lambda_2)(t_1-t_2)).
+\end{align*}
+Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist.
+\item
+Dies ist am einfachsten in der Matrixform nachzurechnen:
+\begin{align*}
+\begin{pmatrix} e^{s_1}&0\\0&1\end{pmatrix}
+\begin{pmatrix} e^{s_2}&0\\0&1\end{pmatrix}
+&=
+\begin{pmatrix}e^{s_1+s_2}&0\\0&1\end{pmatrix}
+&
+\begin{pmatrix} 1&t_1\\0&1\end{pmatrix}
+\begin{pmatrix} 1&t_2\\0&1\end{pmatrix}
+&=
+\begin{pmatrix} 1&t_1+t_2\\0&1\end{pmatrix}
+\end{align*}
+\item
+Die Tangentialvektoren werden erhalten durch ableiten der
+Matrixdarstellung nach dem Parameter
+\begin{align*}
+S
+&=
+\frac{d}{ds} \begin{pmatrix}e^s&0\\0&1\end{pmatrix}\bigg|_{s=0}
+=
+\begin{pmatrix}1&0\\0&0\end{pmatrix}
+\\
+T
+&=
+\frac{d}{dt} \begin{pmatrix}1&t\\0&1\end{pmatrix}\bigg|_{t=0}
+=
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\end{align*}
+\item Der Kommutator ist
+\[
+[S,T]
+=
+\begin{pmatrix}1&0\\0&0\end{pmatrix}
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+-
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\begin{pmatrix}1&0\\0&0\end{pmatrix}
+=
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+-
+\begin{pmatrix}0&0\\0&0\end{pmatrix}
+=
+T.
+\qedhere
+\]
+\end{teilaufgaben}
+\end{loesung}
+
|