aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen/wavelets.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/70-graphen/wavelets.tex250
1 files changed, 125 insertions, 125 deletions
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index 9c88c08..26a9e42 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -1,125 +1,125 @@
-%
-% wavelets.tex -- Wavelets auf Graphen
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Wavelets auf Graphen
-\label{buch:section:wavelets-auf-graphen}}
-\rhead{Wavelets auf Graphen}
-In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
-gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
-Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
-beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
-Graphen entsprechen.
-Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
-Knoten fast vollständig.
-
-Wenn man einen Standardbasisvektor in einem Knoten $i$
-als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
-die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
-konzentriert hat.
-Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
-
-\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
-Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
-der partiellen Differentialgleichung
-\[
-\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
-\]
-Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
-Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
-$\partial^2/\partial x^2$ sind.
-Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
-Entfernung von einem Punkt spielt überhaupt keine Rolle.
-Die Funktion
-\[
-F(x,t)
-=
-\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
-\]
-ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
-der Stelle $0$.
-Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
-Durch Überlagerung von Translaten in eine Funktion
-\begin{equation}
-f(x,t)
-=
-\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
-\label{buch:graphen:eqn:fundamentalueberlagerung}
-\end{equation}
-kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
-Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
-deutlich in einer Umgebung von $\xi$ konzentriert.
-
-% XXX Ausbreitung der Fundamentallösung illustrieren
-\begin{figure}
-\centering
-\includegraphics{chapters/70-graphen/images/fundamental.pdf}
-\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
-Lösungenfunktionen durch Linearkombination erzeugt werden können.
-In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
-abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
-besonders leicht berechnet werden.
-Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
-übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
-einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
-\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
-\label{buch:graphen:fig:fundamental}}
-\end{figure}
-
-\subsection{Fundamentallösungen auf einem Graphen}
-Die Wärmeleitungsgleichung auf einem Graphen kann für einen
-Standardbasisvektor mit Hilfe der
-Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
-gefunden werden.
-Aus physikalischen Gründen ist aber offensichtlich, dass die
-Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
-in der Nähe des Knoten $i$ konzentriert ist.
-Dies ist aber aus der expliziten Formel
-\begin{equation}
-F_i(t)
-=
-\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
-=
-\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
-\label{buch:graphen:eqn:fundamentalgraph}
-\end{equation}
-nicht unmittelbar erkennbar.
-
-Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
-dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
-werden.
-Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
-beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
-über grössere Distanzen.
-Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
-den Extremen der Standardbasis und der Eigenbasis.
-Die ``Interpolation'' geht von der Differentialgleichung aus,
-sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
-auf die gleiche Art bearbeitet.
-
-Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
-aus der sich alle Vektoren linear kombinieren lassen, in der aber
-auch auf die für die Anwendung interessante Längenskala angepasste
-Funktionen gefunden werden können.
-
-\subsection{Wavelets und Frequenzspektrum}
-Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt
-
-
-\subsection{Frequenzspektrum
-\label{buch:subsection:frequenzspektrum}}
-Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches
-wie $e^{-k^2}$ gegen $0$ geht.
-
-Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen
-schneller dämpft als die tiefen Frequenzen.
-
-
-\subsection{Wavelet-Basen
-\label{buch:subsection:}}
-
-
-
-
-
+%
+% wavelets.tex -- Wavelets auf Graphen
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Wavelets auf Graphen
+\label{buch:section:wavelets-auf-graphen}}
+\rhead{Wavelets auf Graphen}
+In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
+gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
+Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
+beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
+Graphen entsprechen.
+Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
+Knoten fast vollständig.
+
+Wenn man einen Standardbasisvektor in einem Knoten $i$
+als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
+die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
+konzentriert hat.
+Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
+
+\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
+Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
+der partiellen Differentialgleichung
+\[
+\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
+\]
+Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
+Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
+$\partial^2/\partial x^2$ sind.
+Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
+Entfernung von einem Punkt spielt überhaupt keine Rolle.
+Die Funktion
+\[
+F(x,t)
+=
+\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
+\]
+ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
+der Stelle $0$.
+Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
+Durch Überlagerung von Translaten in eine Funktion
+\begin{equation}
+f(x,t)
+=
+\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
+\label{buch:graphen:eqn:fundamentalueberlagerung}
+\end{equation}
+kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
+Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
+deutlich in einer Umgebung von $\xi$ konzentriert.
+
+% XXX Ausbreitung der Fundamentallösung illustrieren
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/fundamental.pdf}
+\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
+Lösungenfunktionen durch Linearkombination erzeugt werden können.
+In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
+abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
+besonders leicht berechnet werden.
+Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
+übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
+einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
+\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
+\label{buch:graphen:fig:fundamental}}
+\end{figure}
+
+\subsection{Fundamentallösungen auf einem Graphen}
+Die Wärmeleitungsgleichung auf einem Graphen kann für einen
+Standardbasisvektor mit Hilfe der
+Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
+gefunden werden.
+Aus physikalischen Gründen ist aber offensichtlich, dass die
+Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
+in der Nähe des Knoten $i$ konzentriert ist.
+Dies ist aber aus der expliziten Formel
+\begin{equation}
+F_i(t)
+=
+\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
+=
+\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
+\label{buch:graphen:eqn:fundamentalgraph}
+\end{equation}
+nicht unmittelbar erkennbar.
+
+Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
+dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
+werden.
+Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
+beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
+über grössere Distanzen.
+Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
+den Extremen der Standardbasis und der Eigenbasis.
+Die ``Interpolation'' geht von der Differentialgleichung aus,
+sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
+auf die gleiche Art bearbeitet.
+
+Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
+aus der sich alle Vektoren linear kombinieren lassen, in der aber
+auch auf die für die Anwendung interessante Längenskala angepasste
+Funktionen gefunden werden können.
+
+\subsection{Wavelets und Frequenzspektrum}
+Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt
+
+
+\subsection{Frequenzspektrum
+\label{buch:subsection:frequenzspektrum}}
+Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches
+wie $e^{-k^2}$ gegen $0$ geht.
+
+Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen
+schneller dämpft als die tiefen Frequenzen.
+
+
+\subsection{Wavelet-Basen
+\label{buch:subsection:}}
+
+
+
+
+